Subscribe to RSS
DOI: 10.1055/a-2802-6100
1,n-Metal Migrations Mediated by 3d Transition Metals
Authors
Funding Information Support has been provided in part by JSPS KAKENHI Grant Numbers JP25K01767 (Grant-in-Aid for Scientific Research (B), R.S.); JP24H01856 (Grant-in-Aid for Transformative Research Areas (A) Green Catalysis Science, R.S.); JP25K18035 (Grant-in-Aid for Early-Career Scientists, I.F.).

Dedicated
Dedicated to the successful OMCOS-22 International Symposium on Organometallic Chemistry Directed Toward Organic Synthesis.
Abstract
Remote functionalization of unactivated sites remains a major challenge in transition-metal-catalyzed synthesis. This short review summarizes recent advances in through-space 1,n-metal migration reactions mediated by 3d transition metals, including Cr, Fe, Co, Ni, and Cu. These transformations enable site-selective bond formation at otherwise inaccessible positions and offer sustainable alternatives to conventional cross-coupling strategies. Mechanistic aspects such as ligand-controlled migration, σ-bond metathesis, isotope-labeling studies, and computational insights are highlighted to illustrate how regio- and stereoselectivity are achieved. Collectively, 3d metal-mediated 1,n-migration reactions provide a versatile platform for remote functionalization and open new avenues for reaction design in modern organic synthesis.
Keywords
Metal migration - 3d transition metals - Remote C–H activation - Organometallic chemistry - C–Si activation - C–B activationPublication History
Received: 16 January 2026
Accepted after revision: 02 February 2026
Accepted Manuscript online:
02 February 2026
Article published online:
11 February 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Yorimitsu H, Kotora M, Patil NT. Chem Record 2021; 21: 3335
- 2 Rayadurgam J, Sana S, Sasikumar M, Gu Q. Org Chem Front 2021; 8: 384
- 3 Ruiz-Castillo P, Buchwald SL. Chem Rev 2016; 116: 12564
- 4 Biffis A, Centomo P, Del Zotto A, Zecca M. Chem Rev 2018; 118: 2249
- 5 Lu H, Chang J, Wei H. Acc Chem Res 2025; 58: 933
- 6 Ganley JM, Joe CL, Simmons EM. ACS Catal 2025; 15: 8317
- 7 Brotons-Rufes A, Posada-Pérez S, Martínez JP, Nolan SP, Poater A. Coord Chem Rev 2025; 542: 216827
- 8 Samai S, Atta S, Singh MS. Tetrahedron 2026; 191: 135061
- 9 Brown DG, Boström J. J Med Chem 2015; 59: 4443
- 10 Li M-Y, Wei D, Feng C-G, Lin G-Q. Chem Asian J 2022; 17: e202200456
- 11 Dong X, Wang H, Liu H, Wang F. Org Chem Front 2020; 7: 3530
- 12 Zhang J, Zhao D, Zhu C. Chin J Chem 2026; 44: 804
- 13 Rahim A, Feng J, Gu Z. Chin J Chem 2019; 37: 929
- 14 Li Y, Wu D, Cheng H-G, Yin G. Angew Chem Int Ed 2020; 59: 7990
- 15 Fang Y, Ding M, Huang X. ChemCatChem 2024; 16: e202301320
- 16 Sadeghi M. ACS Catal 2024; 14: 15356
- 17 Ma S, Gu Z. Angew Chem Int Ed 2005; 44: 7512
- 18 Ju C-W, Zhao D. In: Handbook of CH-Functionalization. Maiti D. ed. Weinheim: Wiley-VCH; 2022: 1
- 19 Kochi T, Kanno S, Kakiuchi F. Tetrahedron Lett 2019; 60: 150938
- 20 Zhang M, Ji Y, Zhang C. Chin J Chem 2022; 40: 1608
- 21 Sommer H, Juliá-Hernández F, Martin R, Marek I. ACS Cent Sci 2018; 4: 153
- 22 Yuan D, Liu C, Achal FJ, Joardar MS, Yang K, Ge H. Synthesis 2025; 57: 2169
- 23 Seiser T, Cramer N. Angew Chem Int Ed 2010; 49: 10163
- 24 Hayashi D, Tsuda T, Shintani R. Angew Chem Int Ed 2023; 62: e202313171
- 25 Lee D, Fujii I, Shintani R. ACS Catal 2025; 15: 907
- 26 Dominguez-Molano P, Weeks R, Maza RJ, Carbó JJ, Fernández E. Angew Chem Int Ed 2023; 62: e202304791
- 27 Dominguez-Molano P, Solé-Daura A, Carbó JJ, Fernández E. Adv Sci 2024; 11: 2309779
- 28 Oguma K, Miura M, Satoh T, Nomura M. J Am Chem Soc 2000; 122: 10464
- 29 Matsuda T, Shigeno M, Murakami M. J Am Chem Soc 2007; 129: 12086
- 30 Seiser T, Roth OA, Cramer N. Angew Chem Int Ed 2009; 48: 6320
- 31 Shigeno M, Yamamoto T, Murakami M. Chem Eur J 2009; 15: 12929
- 32 Shintani R, Iino R, Nozaki K. J Am Chem Soc 2014; 136: 7849
- 33 Hayashi T, Inoue K, Taniguchi N, Ogasawara M. J Am Chem Soc 2001; 123: 9918
- 34 Miura T, Sasaki T, Nakazawa H, Murakami M. J Am Chem Soc 2005; 127: 1390
- 35 Shintani R, Okamoto K, Hayashi T. J Am Chem Soc 2005; 127: 2872
- 36 Yamabe H, Mizuno A, Kusama H, Iwasawa N. J Am Chem Soc 2005; 127: 3248
- 37 Campo MA, Larock RC. J Am Chem Soc 2002; 124: 14326
- 38 Huang Q, Fazio A, Dai G, Campo MA, Larock RC. J Am Chem Soc 2004; 126: 7460
- 39 Zhang X, Tong S, Zhu J, Wang M-X. Chem Sci 2023; 14: 827
- 40 Iwata T, Kumagai S, Yoshinaga T. et al. Chem Eur J 2021; 27: 11548
- 41 Sato Y, Takagi C, Shintani R, Nozaki K. Angew Chem Int Ed 2017; 56: 9211
- 42 Tsuda T, Choi S-M, Shintani R. J Am Chem Soc 2021; 143: 1641
- 43 Tsuda T, Kawakami Y, Choi S-M, Shintani R. Angew Chem Int Ed 2020; 59: 8057
- 44 Ikeda Y, Takano K, Kodama S, Ishii Y. Organometallics 2014; 33: 3998
- 45 Partridge BM, González JS, Lam HW. Angew Chem Int Ed 2014; 53: 6523
- 46 Ruscoe RE, Callingham M, Baker JA, Korkis SE, Lam HW. Chem Commun 2019; 55: 838
- 47 Singh A, Sharp PR. J Am Chem Soc 2006; 128: 5998
- 48 Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem Rev 2018; 119: 2192
- 49 Yan J, Yoshikai N. Org Chem Front 2017; 4: 1972
- 50 Murakami K, Ohmiya H, Yorimitsu H, Oshima K. Org Lett 2007; 9: 1569
- 51 Mo J, Müller T, Oliveira JCA, Ackermann L. Angew Chem Int Ed 2018; 57: 7719
- 52 Zhou B, Sato H, Ilies L, Nakamura E. ACS Catal 2017; 8: 8
- 53 Yoshikai N, Mieczkowski A, Matsumoto A, Ilies L, Nakamura E. J Am Chem Soc 2010; 132: 5568
- 54 Snieckus V, Cuevas JC, Sloan CP, Liu H, Curran DP. J Am Chem Soc 1990; 112: 896
- 55 Nakamura M, Ito S, Matsuo K, Nakamura E. Synlett 2005; 1794
- 56 Kimura N, Kochi T, Kakiuchi F. Asian J Org Chem 2019; 8: 1115
- 57 Tan B-H, Dong J, Yoshikai N. Angew Chem Int Ed 2012; 51: 9610
- 58 King AO, Okukado N, Negishi E-I. J Chem Soc Chem Commun 1977; 683
- 59 Negishi E-I. Acc Chem Res 1982; 15: 340
- 60 Yan J, Yoshikai N. ACS Catal 2016; 6: 3738
- 61 Tan B-H, Yoshikai N. Org Lett 2014; 16: 3392
- 62 Okude Y, Hirano S, Hiyama T, Nozaki H. J Am Chem Soc 1977; 99: 3179
- 63 Jin H, Uenishi JI, Christ WJ, Kishi Y. J Am Chem Soc 1986; 108: 5644
- 64 Gil A, Albericio F, Álvarez M. Chem Rev 2017; 117: 8420
- 65 Chen J, Wu L, Song Z. et al. J Am Chem Soc 2024; 146: 26223
- 66 Börjesson M, Janssen-Müller D, Sahoo B, Duan Y, Wang X, Martin R. J Am Chem Soc 2020; 142: 16234
- 67 Simmons EM, Hartwig JF. Angew Chem Int Ed 2012; 51: 3066
- 68 Somerville RJ, Martin R. In: Nickel Catalysis in Organic Synthesis: Methods and Reactions. Ogoshi S. ed. Weinheim: Wiley-VCH; 2019: 285
- 69 Keen AL, Doster M, Johnson SA. J Am Chem Soc 2007; 129: 810
- 70 He Y, Börjesson M, Song H. et al. J Am Chem Soc 2021; 143: 20064
- 71 Li H-Y, Niu Z-J, Li Q. et al. Org Chem Front 2026; 13: 160
- 72 Zhang H, Rodrigalvarez J, Martin R. J Am Chem Soc 2023; 145: 17564
- 73 Wang C-T, Liang P-Y, Li M. et al. Angew Chem Int Ed 2023; 62: e202304447
- 74 Yang J, Li X, Wang X, Han J, Wang Y, Zhu S. Angew Chem Int Ed 2026; 65: e18972
- 75 Guo W, Zi L, Yang J, Wang Y, Zhu S. Angew Chem Int Ed 2025; 64: e202503671
- 76 Ding L, Wang M, Liu Y, Lu H, Zhao Y, Shi Z. Angew Chem Int Ed 2025; 64: e202413557
- 77 Clarke C, Incerti-Pradillos CA, Lam HW. J Am Chem Soc 2016; 138: 8068
- 78 Moniwa H, Yamanaka M, Shintani R. J Am Chem Soc 2023; 145: 23470
- 79 Moniwa H, Shintani R. Chem Eur J 2021; 27: 7512
- 80 Moniwa H, Yamanaka M, Shintani R. Eur J Org Chem 2025; 28: e202401155
- 81 Kondo R, Moniwa H, Shintani R. Org Lett 2023; 25: 4193
- 82 Moniwa H, Shintani R. Org Lett 2025; 27: 1763
- 83 Liu S, Chen W, Long X. et al. Commun Chem 2026; 9: 2
- 84 Kisu H, Sakaino H, Ito F, Yamashita M, Nozaki K. J Am Chem Soc 2016; 138: 3548
- 85 Taguchi H, Ghoroku K, Tadaki M, Tsubouchi A, Takeda T. J Org Chem 2002; 67: 8450
- 86 Li Z, Zhang L, Nishiura M, Hou Z. ACS Catal 2019; 9: 4388
- 87 Laitar DS, Tsui EY, Sadighi JP. J Am Chem Soc 2006; 128: 11036
- 88 Zhao H, Dang L, Marder TB, Lin Z. J Am Chem Soc 2008; 130: 5586
- 89 Heck RF. J Organomet Chem 1972; 37: 389
- 90 Odena C, Gómez-Bengoa E, Martin R. J Am Chem Soc 2024; 146: 112