Subscribe to RSS
DOI: 10.1055/s-0028-1083139
Synthetic Uses of Chlorotitanium(IV) Triisopropoxide in C-C(N) Bond Formation
Publication History
Publication Date:
24 November 2008 (online)
Biographical Sketches
Introduction
Chlorotitanium(IV) isopropoxide, ClTi(Oi-Pr)3, is a Lewis acid utilized in various synthetic procedures for carbon-carbon (or nitrogen) bond constructions. Its preparation involves the mixing of three equivalents of tetraisopropoxytitanium and one equivalent of titanium(IV) chloride at 0 ˚C under a nitrogen atmosphere. Vacuum distillation of the crude product furnishes a syrupy liquid which turns into a solid at room temperature. It is soluble in n-pentane, toluene, THF and CH2Cl2; it is moisture-sensitive but can be kept under nitrogen for several months. [¹] The reagent is used as a starting material for the synthesis of versatile alkyl- and aryltriisopropoxytitanium compounds that are more chemo- and stereoselective as compared to Grignard reagents. [¹] ,²
Abstracts
(A) Enolates with titanium as metal component formed by displacement of lithium with ClTi(Oi-Pr)3 give a more covalent derivative that imposes high diastereoselectivity. The enolate was hypothesized to exist in equilibrium with lithium enolate and lithium-titanium-ate complex. It was found that increasing the stoichiometry of this reagent to two equivalents improves the reaction’s diastereoselectivity. A recent application of this procedure has been the diastereoselective nucleophilic addition to tert-butanesulfinyl aldimines and ketimines to furnish β-amino acids with high enantiomeric purity. [³] | |
(B) Phillips and co-workers described the application of ClTi(Oi-Pr)3 in the total synthesis of two cytotoxic metabolites, namely dictyostatin-1 and (-)-7-demethylpiericidin A1, via cyclization of (silyloxy)enyne intermediates. [4] In this transformation, the combination of ClTi(Oi-Pr)3 and i-PrMgCl gives in situ (η2-propene)Ti(Oi-Pr)2 which effects a highly diastereoselective 5-exo-trig cyclization. | |
(C) Transmetallation of lithiated alkynl carbamates with ClTi(Oi-Pr)3 yields chiral allene and alk-3-en-5-yn-1-ol derivatives. Most notable in this reaction is the inversion process during the lithium-titanium exchange that occurs at the deprotonated prochiral center. [5] | |
(D) Esters and amides in Kulinkovich reactions [6] form titanacyclopropane intermediates after treatment with alkoxy-containing titanium reagents such as ClTi(Oi-Pr)3 and alkyl Grignard reagents to provide cyclopropyl alcohols and amines. [7] Many variants have been developed for this reaction and have given rise to the synthesis of various carbocycles, [8] and heterocycles that contain sulfur [9] and nitrogen. [¹0] | |
(E) Somfai et al. described that a mixture of ClTi(Oi-Pr)3 and TiCl3 in CH2Cl2 imposes high diastereoselection in the intramolecular annulation of cationic aminyl radicals in a radical chain fashion to furnish pyrrolidines. [¹¹] | |
(F) Gais et al. reported that transmetallation of lithiated allylsulfoximines with ClTi(Oi-Pr)3 affords bis(allyl)-titanium complexes which react stereoselectively with aldehydes at the γ-position to furnish homoallylic alcohols. This methodology has been applied to the synthesis of unnatural amino acids and azaspirocycles. [¹²] |
- 1
Reetz MT. Top. Curr. Chem. 1982, 106: 1 -
2a
Reetz MT.Westermann J.Steinbach R.Wenderoth B.Peter R.Maus S. Chem. Ber. 1985, 118: 1421 -
2b
Weidmann B.Seebach D. Angew. Chem. Int. Ed. Engl. 1983, 22: 31 -
3a
Tang TP.Ellman JA. J. Org. Chem. 1999, 64: 12 -
3b
Siegel C.Thornton ER. J. Am. Chem. Soc. 1989, 111: 5722 -
3c
Tang TP.Ellman JA. J. Org. Chem. 2002, 67: 7819 -
4a
O’ Neil GW.Phillips AJ. Tetrahedron Lett. 2004, 45: 4253 -
4b
Keaton KA.Phillips AJ. J. Am. Chem. Soc. 2006, 128: 408 -
5a
Schultz-Fademrecht C.Wibbeling B.Fröhlich R.Hoppe D. Org. Lett. 2001, 3: 1221 -
5b
Chedid RB.Brümmer M.Wibbeling B.Fröhlich R.Hoppe D. Angew. Chem. 2007, 46: 3131 -
6a
Kulinkovich OG.Sviridov SV.Vasilevskii DA. Synthesis 1991, 234 -
6b
Kulinkovich OG.de Meijere A. Chem. Rev. 2000, 100: 2789 -
7a
Lee JC.Sung MJ.Cha JK. Tetrahedron Lett. 2001, 42: 2059 -
7b
de Meijere A.Williams CM.Kourdioukov A.Sviridov SV.Chaplinski V.Kordes M.Savchenko AI.Stratmann C.Noltemeyer M. Chem. Eur. J. 2006, 3789 -
7c
Faler CA.Joullié MM. Org. Lett. 2007, 9: 1987 -
8a
Okamoto S.Subburaj K.Sato F. J. Am. Chem. Soc. 2000, 122: 11244 -
8b
Sung MJ.Pang J.-H.Park S.-B.Cha JK. Org. Lett. 2003, 5: 2137 -
8c
Baktharaman S.Selvakumar S.Singh VK. Org. Lett. 2006, 8: 4335 - 9
Sawada Y.Oku A. J. Org. Chem. 2004, 69: 2899 -
10a
Cao B.Xiao D.Joullié MM. Org. Lett. 1999, 1: 1799 -
10b
Kim S.-H.Kim S.-I.Lai S.Cha JH. J. Org. Chem. 1999, 64: 6771 -
10c
Kim S.-H.Park S.Choo H.Cha JH. Tetrahedron Lett. 2002, 43: 6657 - 11
Hemmerling M.Sjöholm A.Somfai P. Tetrahedron: Asymmetry 1999, 10: 4091 -
12a
Gais H.-J.Hainz R.Müller H.Bruns PR.Giesen N.Raabe G.Runsick J.Nienstedt S.Decker J.Schleusner M.Hachtel J.Loo R.Woo C.-W. Eur. J. Org. Chem. 2000, 3973 -
12b
Tiwari SK.Gais H.-G.Lindenmaier A.Babu GS.Raabe G.Reddy LR.Köhler F.Günter M.Koep S.Iska VBR. J. Am. Chem. Soc. 2006, 128: 7360 -
12c
Köhler F.Gais H.-J.Raabe G. Org. Lett. 2007, 9: 1231 -
12d
Adrien A.Gais H.-G.Köhler F.Runsink J.Raabe G. Org. Lett. 2007, 9: 2155
References
- 1
Reetz MT. Top. Curr. Chem. 1982, 106: 1 -
2a
Reetz MT.Westermann J.Steinbach R.Wenderoth B.Peter R.Maus S. Chem. Ber. 1985, 118: 1421 -
2b
Weidmann B.Seebach D. Angew. Chem. Int. Ed. Engl. 1983, 22: 31 -
3a
Tang TP.Ellman JA. J. Org. Chem. 1999, 64: 12 -
3b
Siegel C.Thornton ER. J. Am. Chem. Soc. 1989, 111: 5722 -
3c
Tang TP.Ellman JA. J. Org. Chem. 2002, 67: 7819 -
4a
O’ Neil GW.Phillips AJ. Tetrahedron Lett. 2004, 45: 4253 -
4b
Keaton KA.Phillips AJ. J. Am. Chem. Soc. 2006, 128: 408 -
5a
Schultz-Fademrecht C.Wibbeling B.Fröhlich R.Hoppe D. Org. Lett. 2001, 3: 1221 -
5b
Chedid RB.Brümmer M.Wibbeling B.Fröhlich R.Hoppe D. Angew. Chem. 2007, 46: 3131 -
6a
Kulinkovich OG.Sviridov SV.Vasilevskii DA. Synthesis 1991, 234 -
6b
Kulinkovich OG.de Meijere A. Chem. Rev. 2000, 100: 2789 -
7a
Lee JC.Sung MJ.Cha JK. Tetrahedron Lett. 2001, 42: 2059 -
7b
de Meijere A.Williams CM.Kourdioukov A.Sviridov SV.Chaplinski V.Kordes M.Savchenko AI.Stratmann C.Noltemeyer M. Chem. Eur. J. 2006, 3789 -
7c
Faler CA.Joullié MM. Org. Lett. 2007, 9: 1987 -
8a
Okamoto S.Subburaj K.Sato F. J. Am. Chem. Soc. 2000, 122: 11244 -
8b
Sung MJ.Pang J.-H.Park S.-B.Cha JK. Org. Lett. 2003, 5: 2137 -
8c
Baktharaman S.Selvakumar S.Singh VK. Org. Lett. 2006, 8: 4335 - 9
Sawada Y.Oku A. J. Org. Chem. 2004, 69: 2899 -
10a
Cao B.Xiao D.Joullié MM. Org. Lett. 1999, 1: 1799 -
10b
Kim S.-H.Kim S.-I.Lai S.Cha JH. J. Org. Chem. 1999, 64: 6771 -
10c
Kim S.-H.Park S.Choo H.Cha JH. Tetrahedron Lett. 2002, 43: 6657 - 11
Hemmerling M.Sjöholm A.Somfai P. Tetrahedron: Asymmetry 1999, 10: 4091 -
12a
Gais H.-J.Hainz R.Müller H.Bruns PR.Giesen N.Raabe G.Runsick J.Nienstedt S.Decker J.Schleusner M.Hachtel J.Loo R.Woo C.-W. Eur. J. Org. Chem. 2000, 3973 -
12b
Tiwari SK.Gais H.-G.Lindenmaier A.Babu GS.Raabe G.Reddy LR.Köhler F.Günter M.Koep S.Iska VBR. J. Am. Chem. Soc. 2006, 128: 7360 -
12c
Köhler F.Gais H.-J.Raabe G. Org. Lett. 2007, 9: 1231 -
12d
Adrien A.Gais H.-G.Köhler F.Runsink J.Raabe G. Org. Lett. 2007, 9: 2155