Synlett 2008(17): 2605-2608  
DOI: 10.1055/s-0028-1083520
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Lewis Acid Induced Highly Regioselective Synthesis of a New Class of Substituted Isoxazolidines

Fides Benfatti*, Giuliana Cardillo*, Luca Gentilucci, Elisa Mosconi, Alessandra Tolomelli
Department of Chemistry ‘G. Ciamician’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
Fax: +39(051)2099456; e-Mail: giuliana.cardillo@ unibo.it; e-Mail: fides.benfatti@studio.unibo.it;
Further Information

Publication History

Received 3 June 2008
Publication Date:
01 October 2008 (online)

Abstract

The 1,4-addition of N,O-bis(trimethylsilyl)hydroxyl­amine to alkylidene acetoacetates afforded in one step 3,4,5-trisubstituted isoxazolidines. An investigation on the effect of the Lewis acid catalysis on the regioselectivity of the addition is also herein reported.

    References and Notes

  • 1a Perlmutter P. Conjugate Addition Reaction in Organic Synthesis   Pergamon Press; Oxford: 1992. 
  • 1b Davies SG. Ichihara OJ. Synth. Org. Chem. Jpn.  1997,  55:  26 
  • 1c Leonard J. Diez-Barra E. Merino S. Eur. J. Org. Chem.  1998,  2951 
  • 1d Sibi MP. Manyem S. Tetrahedron  2000,  56:  8033 
  • 2a Juaristi E. Enantioselective Synthesis of β-Amino Acids   1st ed.:  Wiley; Hoboken NJ: 1997. 
  • 2b Juaristi E. Soloshonok VA. Enantioselective Synthesis of β-Amino Acids   2nd ed.:  Wiley; Hoboken NJ: 2005. 
  • 2c Cardillo G. Tomasini C. Chem. Soc. Rev.  1996,  25:  117 
  • 3a The Organic Chemistry of β-Lactams   Georg GI. Wiley; New York: 1993. 
  • 3b von Nussbaum F. Spiteller P. In Highlights in Bioorganic Chemistry   Schmuck C. Wennemers H. Wiley-VCH; Weinheim: 2004.  p.63 
  • 3c Palomo C. Aizpurua JM. Ganboa I. Oiarbide M. Curr. Med. Chem.  2004,  11:  1837 
  • 4a Cardillo G. Gentilucci L. Gianotti M. Kim H. Perciaccante R. Tolomelli A. Tetrahedron: Asymmetry  2001,  12:  2395 
  • 4b Cardillo G. Gentilucci L. Gianotti M. Perciaccante R. Tolomelli A. J. Org. Chem.  2001,  66:  8657 
  • 4c Cardillo G. Fabbroni S. Gentilucci L. Gianotti M. Percacciante R. Tolomelli A. Tetrahedron: Asymmetry  2002,  13:  1407 
  • 4d Cardillo G. Fabbroni S. Gentilucci L. Gianotti M. Percacciante R. Selva S. Tolomelli A. Tetrahedron: Asymmetry  2002,  13:  1411 
  • For previous examples of alkylhydroxylamine addition to unsaturated derivatives, see:
  • 4e Baldwin SW. Aube J. Tetrahedron Lett.  1987,  28:  179 
  • 4f Langlois N. Calvez O. Radom M.-O. Tetrahedron Lett.  1997,  38:  8037 
  • 4g Ishikawa T. Nagai K. Kudoh T. Saito S. Synlett  1998,  1291 
  • 5a Maciejewski S. Panfil I. Belzecki C. Chmielewski M. Tetrahedron  1992,  48:  10363 
  • 5b Frelek J. Panfil I. Gluzinski P. Chmielewski M. Tetrahedron: Asymmetry  1996,  7:  3415 
  • 5c Xiang Y. Hung-Jang G. Schinazi RF. Zhao K. J. Org. Chem.  1997,  62:  7430 
  • 5d Panfil I. Urbanczyk-Lipkowska Z. Chmielewski M. Carbohydr. Res.  1998,  306:  505 
  • 5e Merino P. Franco S. Merchan FL. Tejero T. J. Org. Chem.  2000,  65:  5575 
  • 6 Ibrahem I. Rios R. Vesely J. Zhao G.-L. Cordova A. Chem. Commun.  2007,  849 
  • Isoxazolidines may be readily obtained via enantioselective 1,3-dipolar cycloaddition of nitrones to alkenes. For recent papers, see:
  • 7a Gothelf KV. Jørgensen KA. Chem. Rev.  1998,  98:  863 
  • 7b Gothelf KV. Jørgensen KA. Chem. Commun.  2000,  1449 
  • 7c Gothelf KV. Jørgensen KA. Asymmetric Reactions, In Synthetic Application of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products   Padwa A. Pearson W. John Wiley & Sons; New York: 2002.  Chap. 12. p.817-899  
  • 7d Shirahase M. Kanemasa S. Oderaotoshi Y. Org. Lett.  2004,  6:  675 
  • 8a For a review, see: Pan S. Amankulor NM. Zhao K. Tetrahedron  1998,  54:  6587 
  • For selected papers, see:
  • 8b Nishi K. Imuta M. Kimura Y. Miwa H. J. Antibiot.  1995,  48:  1481 
  • 8c Sharma GVM. Reddy SI. Reddy VG. Rama Rao AV. Tetrahedron: Asymmetry  1999,  10:  229 
  • 8d Chiacchio U. Borrello L. Iannazzo D. Merino P. Piperno A. Rescifina A. Richichi B. Romeo G. Tetrahedron: Asymmetry  2003,  14:  2419 
  • 8e Kaffy J. Pontikis R. Carrez D. Croisy A. Monneret C. Florent JC. Bioorg. Med. Chem.  2006,  14:  4067 
  • 8f Hyrosova E. Medvecky M. Fisera L. Hametner C. Frolich J. Marchetti M. Allmaier G. Tetrahedron  2008,  64:  3111 
  • 9a Campbell AD. Raynham TM. Taylor RJK. Tetrahedron Lett.  1999,  40:  5263 
  • 9b Lieberknecht A. Griesser H. Kramer B. Bravo RD. Colinas PA. Grigera RJ. Tetrahedron  1999,  55:  6475 
  • 9c VanBrunt MP. Standaert RF. Org. Lett.  2000,  2:  705 
  • For the use of Lewis acids as catalyst in organic synthesis, see:
  • 10a Kobayashi S. Araki M. Ishitani H. Nagayama S. Hachiya I. Synlett  1995,  233 
  • 10b Kobayashi S. Nagayama S. J. Am. Chem. Soc.  1997,  119:  10049 
  • 10c Manabe K. Kobayashi S. Org. Lett.  1999,  1:  1965 
  • 10d Yamamoto H. Lewis Acids in Organic Synthesis   Vol. 1:  Wiley-VCH; Weinheim: 2000. 
  • 10e Yamamoto H. Lewis Acids in Organic Synthesis   Vol. 2:  Wiley-VCH; Weinheim: 2000. 
  • 10f Okitsu O. Oyamada H. Furuta T. Kobayashi S. Heterocycles  2000,  52:  1143 
  • 10g Ishitani H. Ueno M. Kobayashi S. J. Am. Chem. Soc.  2000,  122:  8180 
  • 10h Kobayashi S. Kakumoto K. Sugiura M. Org. Lett.  2002,  4:  1319 
  • 10i Wang C. Xi Z. Chem. Soc. Rev.  2007,  36:  1395 
  • 11 Benfatti F. Cardillo G. Gentilucci L. Mosconi E. Tolomelli A. Tetrahedron: Asymmetry  2007,  18:  2227 
  • 12a Rao IN. Prabhakaran EN. Das SK. Iqbal J. J. Org. Chem.  2003,  68:  4079 
  • 12b Ghosh R. Swarupananda M. Ghosh S. Mukherjee AK. Synthesis  2007,  190 
  • The anomers of 3,4-trans-3a could not be separated by flash chromatography and their stereochemistry was attributed on the basis of the coupling constants and through NOE experiments. The major anomer showed that the methyl group at 5-position was cis to the proton at C4. For NMR determination of similar structures, see:
  • 13a Yong SR. Ung AT. Pyne SG. Skelton BW. White AH. Tetrahedron  2007,  63:  5579 
  • 13b Piotrowska DG. Tetrahedron: Asymmetry  2008,  19:  279 
  • 13c Fiumana A. Lombardo M. Trombini C. J. Org. Chem.  1997,  62:  5623 
  • 13d

    3a: Major anomer: ¹H NMR (600 MHz, C6D6): δ = 0.82 (d, 3 H, J = 6.6 Hz), 0.93 (t, 3 H, J = 7.2 Hz), 0.97 (d, 3 H,
    J = 6.6 Hz), 1.51 (s, 3 H), 1.64 (m, 1 H), 2.83 (d, 1 H, J = 5.4 Hz), 3.58 (dd, 1 H, J = 5.4, 7.2 Hz), 3.93 (m, 1 H), 3.98 (m, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 14.1, 18.7, 19.4, 23.8, 32.6, 60.1, 61.3, 67.9, 106.5, 170.7. Minor anomer: ¹H NMR (600 MHz, C6D6): δ = 0.86 (d, 3 H, J = 7.2 Hz), 0.88 (d, 3 H, J = 6.6 Hz), 0.91 (t, 3 H, J = 7.2 Hz), 1.45 (s, 3 H), 1.50 (m, 1 H), 3.03 (d, 1 H, J = 7.8 Hz), 3.88 (dd, 1 H, J = 7.2, 7.8 Hz), 3.92 (m, 2 H). ¹³C NMR (75 MHz, CDCl3): δ = 14.2, 19.6, 20.4, 22.2, 30.1, 61.1, 62.0, 71.9, 108.4, 171.5.

  • 16 Jencks WP. J. Am. Chem. Soc.  1959,  81:  475 
14

4a: ¹H NMR (300 MHz, CDCl3): δ = 1.20 (m, 9 H), 2.05 (s, 3 H), 2.65 (m, 1 H), 4.24 (m, 2 H), 5.87 (d, 1 H, J = 10.2 Hz). ¹³C NMR (75 MHz, CDCl3): δ = 10.6, 14.1, 22.4, 29.4, 61.0, 131.3, 143.9, 154.4, 167.5.

15

6a: ¹H NMR (300 MHz, C6D6): δ = 0.80 (d, 3 H, J = 6.6 Hz), 0.84 (d, 3 H, J = 6.9 Hz), 0.93 (t, 3 H, J = 6.9 Hz), 1.66 (s,
3 H), 1.77 (m, 1 H), 2.40 (s, 3 H), 3.16 (d, 1 H, J = 7.2 Hz), 3.95 (m, 2 H), 5.05 (dd, 1 H, J = 6.3, 7.2 Hz). ¹³C NMR
(75 MHz, CDCl3): δ = 14.0, 17.6, 18.7, 25.1, 33.3, 37.6, 61.0, 61.6, 65.1, 109.8, 167.5.