Subscribe to RSS
DOI: 10.1055/s-0028-1083520
Lewis Acid Induced Highly Regioselective Synthesis of a New Class of Substituted Isoxazolidines
Publication History
Publication Date:
01 October 2008 (online)
Abstract
The 1,4-addition of N,O-bis(trimethylsilyl)hydroxylamine to alkylidene acetoacetates afforded in one step 3,4,5-trisubstituted isoxazolidines. An investigation on the effect of the Lewis acid catalysis on the regioselectivity of the addition is also herein reported.
Keywords
isoxazolidine - oxime - addition reactions - regioselectivity - Lewis acids
-
1a
Perlmutter P. Conjugate Addition Reaction in Organic Synthesis Pergamon Press; Oxford: 1992. -
1b
Davies SG.Ichihara OJ. Synth. Org. Chem. Jpn. 1997, 55: 26 -
1c
Leonard J.Diez-Barra E.Merino S. Eur. J. Org. Chem. 1998, 2951 -
1d
Sibi MP.Manyem S. Tetrahedron 2000, 56: 8033 -
2a
Juaristi E. Enantioselective Synthesis of β-Amino Acids 1st ed.: Wiley; Hoboken NJ: 1997. -
2b
Juaristi E.Soloshonok VA. Enantioselective Synthesis of β-Amino Acids 2nd ed.: Wiley; Hoboken NJ: 2005. -
2c
Cardillo G.Tomasini C. Chem. Soc. Rev. 1996, 25: 117 -
3a
The Organic Chemistry of β-Lactams
Georg GI. Wiley; New York: 1993. -
3b
von Nussbaum F.Spiteller P. In Highlights in Bioorganic ChemistrySchmuck C.Wennemers H. Wiley-VCH; Weinheim: 2004. p.63 -
3c
Palomo C.Aizpurua JM.Ganboa I.Oiarbide M. Curr. Med. Chem. 2004, 11: 1837 -
4a
Cardillo G.Gentilucci L.Gianotti M.Kim H.Perciaccante R.Tolomelli A. Tetrahedron: Asymmetry 2001, 12: 2395 -
4b
Cardillo G.Gentilucci L.Gianotti M.Perciaccante R.Tolomelli A. J. Org. Chem. 2001, 66: 8657 -
4c
Cardillo G.Fabbroni S.Gentilucci L.Gianotti M.Percacciante R.Tolomelli A. Tetrahedron: Asymmetry 2002, 13: 1407 -
4d
Cardillo G.Fabbroni S.Gentilucci L.Gianotti M.Percacciante R.Selva S.Tolomelli A. Tetrahedron: Asymmetry 2002, 13: 1411 - For previous examples of alkylhydroxylamine addition to unsaturated derivatives, see:
-
4e
Baldwin SW.Aube J. Tetrahedron Lett. 1987, 28: 179 -
4f
Langlois N.Calvez O.Radom M.-O. Tetrahedron Lett. 1997, 38: 8037 -
4g
Ishikawa T.Nagai K.Kudoh T.Saito S. Synlett 1998, 1291 -
5a
Maciejewski S.Panfil I.Belzecki C.Chmielewski M. Tetrahedron 1992, 48: 10363 -
5b
Frelek J.Panfil I.Gluzinski P.Chmielewski M. Tetrahedron: Asymmetry 1996, 7: 3415 -
5c
Xiang Y.Hung-Jang G.Schinazi RF.Zhao K. J. Org. Chem. 1997, 62: 7430 -
5d
Panfil I.Urbanczyk-Lipkowska Z.Chmielewski M. Carbohydr. Res. 1998, 306: 505 -
5e
Merino P.Franco S.Merchan FL.Tejero T. J. Org. Chem. 2000, 65: 5575 - 6
Ibrahem I.Rios R.Vesely J.Zhao G.-L.Cordova A. Chem. Commun. 2007, 849 - Isoxazolidines may be readily obtained via enantioselective 1,3-dipolar cycloaddition of nitrones to alkenes. For recent papers, see:
-
7a
Gothelf KV.Jørgensen KA. Chem. Rev. 1998, 98: 863 -
7b
Gothelf KV.Jørgensen KA. Chem. Commun. 2000, 1449 -
7c
Gothelf KV.Jørgensen KA. Asymmetric Reactions, In Synthetic Application of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural ProductsPadwa A.Pearson W. John Wiley & Sons; New York: 2002. Chap. 12. p.817-899 -
7d
Shirahase M.Kanemasa S.Oderaotoshi Y. Org. Lett. 2004, 6: 675 -
8a For
a review, see:
Pan S.Amankulor NM.Zhao K. Tetrahedron 1998, 54: 6587 - For selected papers, see:
-
8b
Nishi K.Imuta M.Kimura Y.Miwa H. J. Antibiot. 1995, 48: 1481 -
8c
Sharma GVM.Reddy SI.Reddy VG.Rama Rao AV. Tetrahedron: Asymmetry 1999, 10: 229 -
8d
Chiacchio U.Borrello L.Iannazzo D.Merino P.Piperno A.Rescifina A.Richichi B.Romeo G. Tetrahedron: Asymmetry 2003, 14: 2419 -
8e
Kaffy J.Pontikis R.Carrez D.Croisy A.Monneret C.Florent JC. Bioorg. Med. Chem. 2006, 14: 4067 -
8f
Hyrosova E.Medvecky M.Fisera L.Hametner C.Frolich J.Marchetti M.Allmaier G. Tetrahedron 2008, 64: 3111 -
9a
Campbell AD.Raynham TM.Taylor RJK. Tetrahedron Lett. 1999, 40: 5263 -
9b
Lieberknecht A.Griesser H.Kramer B.Bravo RD.Colinas PA.Grigera RJ. Tetrahedron 1999, 55: 6475 -
9c
VanBrunt MP.Standaert RF. Org. Lett. 2000, 2: 705 - For the use of Lewis acids as catalyst in organic synthesis, see:
-
10a
Kobayashi S.Araki M.Ishitani H.Nagayama S.Hachiya I. Synlett 1995, 233 -
10b
Kobayashi S.Nagayama S. J. Am. Chem. Soc. 1997, 119: 10049 -
10c
Manabe K.Kobayashi S. Org. Lett. 1999, 1: 1965 -
10d
Yamamoto H. Lewis Acids in Organic Synthesis Vol. 1: Wiley-VCH; Weinheim: 2000. -
10e
Yamamoto H. Lewis Acids in Organic Synthesis Vol. 2: Wiley-VCH; Weinheim: 2000. -
10f
Okitsu O.Oyamada H.Furuta T.Kobayashi S. Heterocycles 2000, 52: 1143 -
10g
Ishitani H.Ueno M.Kobayashi S. J. Am. Chem. Soc. 2000, 122: 8180 -
10h
Kobayashi S.Kakumoto K.Sugiura M. Org. Lett. 2002, 4: 1319 -
10i
Wang C.Xi Z. Chem. Soc. Rev. 2007, 36: 1395 - 11
Benfatti F.Cardillo G.Gentilucci L.Mosconi E.Tolomelli A. Tetrahedron: Asymmetry 2007, 18: 2227 -
12a
Rao IN.Prabhakaran EN.Das SK.Iqbal J. J. Org. Chem. 2003, 68: 4079 -
12b
Ghosh R.Swarupananda M.Ghosh S.Mukherjee AK. Synthesis 2007, 190 - The anomers of 3,4-trans-3a could not be separated by flash chromatography and their stereochemistry was attributed on the basis of the coupling constants and through NOE experiments. The major anomer showed that the methyl group at 5-position was cis to the proton at C4. For NMR determination of similar structures, see:
-
13a
Yong SR.Ung AT.Pyne SG.Skelton BW.White AH. Tetrahedron 2007, 63: 5579 -
13b
Piotrowska DG. Tetrahedron: Asymmetry 2008, 19: 279 -
13c
Fiumana A.Lombardo M.Trombini C. J. Org. Chem. 1997, 62: 5623 -
13d
3a: Major anomer: ¹H NMR (600 MHz, C6D6): δ = 0.82 (d, 3 H, J = 6.6 Hz), 0.93 (t, 3 H, J = 7.2 Hz), 0.97 (d, 3 H,
J = 6.6 Hz), 1.51 (s, 3 H), 1.64 (m, 1 H), 2.83 (d, 1 H, J = 5.4 Hz), 3.58 (dd, 1 H, J = 5.4, 7.2 Hz), 3.93 (m, 1 H), 3.98 (m, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 14.1, 18.7, 19.4, 23.8, 32.6, 60.1, 61.3, 67.9, 106.5, 170.7. Minor anomer: ¹H NMR (600 MHz, C6D6): δ = 0.86 (d, 3 H, J = 7.2 Hz), 0.88 (d, 3 H, J = 6.6 Hz), 0.91 (t, 3 H, J = 7.2 Hz), 1.45 (s, 3 H), 1.50 (m, 1 H), 3.03 (d, 1 H, J = 7.8 Hz), 3.88 (dd, 1 H, J = 7.2, 7.8 Hz), 3.92 (m, 2 H). ¹³C NMR (75 MHz, CDCl3): δ = 14.2, 19.6, 20.4, 22.2, 30.1, 61.1, 62.0, 71.9, 108.4, 171.5. - 16
Jencks WP. J. Am. Chem. Soc. 1959, 81: 475
References and Notes
4a: ¹H NMR (300 MHz, CDCl3): δ = 1.20 (m, 9 H), 2.05 (s, 3 H), 2.65 (m, 1 H), 4.24 (m, 2 H), 5.87 (d, 1 H, J = 10.2 Hz). ¹³C NMR (75 MHz, CDCl3): δ = 10.6, 14.1, 22.4, 29.4, 61.0, 131.3, 143.9, 154.4, 167.5.
15
6a: ¹H
NMR (300 MHz, C6D6): δ = 0.80
(d, 3 H, J = 6.6 Hz), 0.84 (d,
3 H, J = 6.9 Hz), 0.93 (t, 3
H, J = 6.9 Hz), 1.66 (s,
3
H), 1.77 (m, 1 H), 2.40 (s, 3 H), 3.16 (d, 1 H, J = 7.2
Hz), 3.95 (m, 2 H), 5.05 (dd, 1 H, J = 6.3,
7.2 Hz). ¹³C NMR
(75 MHz,
CDCl3): δ = 14.0, 17.6, 18.7, 25.1,
33.3, 37.6, 61.0, 61.6, 65.1, 109.8, 167.5.