Synlett 2008(20): 3149-3152  
DOI: 10.1055/s-0028-1087367
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Highly Enantioselective Aziridination of N-Protected Imines: Comparison of the Phosphazene EtP2 and Sodium Hydride as Bases

Irena Stipetić, Marin Roje, Zdenko Hameršak*
Department of Organic Chemistry and Biochemistry, Rudjer Bošković Institute, P. O. Box 180, 10002 Zagreb, Croatia
Fax: +385(1)4680108; e-Mail: hamer@irb.hr;
Further Information

Publication History

Received 4 September 2008
Publication Date:
26 November 2008 (online)

Abstract

Asymmetric synthesis of 2,3-disubstituted N-Boc, N-SES, and N-Ts aziridines starting from N-protected imines, using sulfonium salt derived from Eliel’s oxathiane, is reported. Sodium hydride was successfully used as a substitute for the phosphazene base EtP2 without any loss of yield, enantioselectivity, or diastereoselectivity.

    References and Notes

  • For reviews on asymmetric aziridinations and ring transformations, see:
  • 1a Tanner T. Angew. Chem., Int. Ed. Engl.  1994,  33:  599 
  • 1b McCoull W. Davis FA. Synthesis  2000,  1347 
  • 1c Zwanenburg B. Holte PT. Top. Curr. Chem.  2001,  216:  93 
  • 1d Sweeney JB. Chem. Soc. Rev.  2002,  31:  247 
  • 1e Müller P. Fruit C. Chem. Rev.  2003,  103:  2905 
  • 1f Aziridines and Epoxides in Organic Synthesis   Yudin AK. Wiley-VCH; Weinheim: 2006. 
  • 1g McGarrigle EM. Myers EL. Illa O. Shaw MA. Riches SL. Aggarwal VK. Chem. Rev.  2007,  107:  5841 
  • 1h McGarrigle EM. Aggarwal VK. Enantioselective Organocatalysis: Reactions and Experimental Procedures   Dalko PI. Wiley-VCH; Weinheim: 2007.  Chap. 10.
  • 1i Friestad GK. Mathies AK. Tetrahedron  2007,  63:  2514 
  • 1j Padwa A. In Comprehensive Heterocyclic Chemistry III   Vol. 1:  Katrizky KA. Ramsden CA. Scriven EFV. Taylor RJK. Elsevier; Oxford: 2008.  Chap.1. p.1 
  • 2a Davis FA. Liu H. Zhou P. Fang R. Reddy V. Zhang Y. J. Org. Chem.  1999,  64:  7559 
  • 2b Davis FA. Ramachandar T. Wu Y. J. Org. Chem.  2003,  68:  6894 
  • 2c Davis FA. Wu Y. McCoull W. Prasad K. J. Org. Chem.  2003,  68:  2410 
  • 2d Sweeney JB. McLaren AB. Org. Lett.  1999,  1:  1339 
  • 3a Hansen KB. Finney NS. Jacobsen EN. Angew. Chem., Int. Ed. Engl.  1995,  34:  676 
  • 3b Juhl K. Hazell RG. Jorgensen KA. J. Chem. Soc., Perkin Trans. 1  1999,  2293 
  • 3c Rasmussen KG. Jorgensen KA. J. Chem. Soc., Perkin Trans. 1  1997,  1287 
  • 3d Antilla JC. Wulff WD. J. Am. Chem. Soc.  1999,  121:  5099 
  • 3e Antilla JC. Wulff WD. Angew. Chem. Int. Ed.  2000,  39:  4518 
  • 4a Aggarwal VK. Thompson A. Jones RVH. Standen MCH. J. Org. Chem.  1996,  61:  8368 
  • 4b Aggarwal VK. Alonso E. Fang G. Ferrara M. Hynd G. Porcelloni M. Angew. Chem. Int. Ed.  2001,  40:  1433 
  • 4c Aggarwal VK. Ferrara M. O’Brien CJ. Thompson A. Jones RVH. Fieldhouse R. J. Chem. Soc., Perkin Trans. 1  2001,  1635 
  • 4d Li AH. Zhou YG. Dai LX. Hou XL. Xia LJ. Lin J. J. Org. Chem.  1998,  63:  4338 
  • 4e Hou XL. Wu J. Fan RH. Ding CH. Luo ZB. Dai LX. Synlett  2006,  181 
  • 4f Saito T. Sakairi M. Akiba D. Tetrahedron Lett.  2001,  42:  5451 
  • 4g Morton D. Pearson D. Field RA. Stockman RA. Org. Lett.  2004,  6:  2377 
  • 4h Robiette R. J. Org. Chem.  2006,  71:  2726 
  • 4i Janardanan D. Sunoj RB. Chem. Eur. J.  2007,  13:  4805 
  • 5 Solladié-Cavallo A. Roje M. Welter R. Šunjić V. J. Org. Chem.  2004,  69:  1409 
  • For applications of the sulfonium salt 1 in asymmetric epoxidations, see:
  • 6a Solladié-Cavallo A. Adib A. Tetrahedron  1992,  48:  2453 
  • 6b Solladié-Cavallo A. Diep-Vohuule A. J. Org. Chem.  1995,  60:  3494 
  • 6c Solladié-Cavallo A. Diep-Vohuule A. Šunjić V. Vinković V. Tetrahedron: Asymmetry  1996,  7:  1783 
  • 6d Solladié-Cavallo A. Diep-Vohuule A. Isarno T. Angew. Chem. Int. Ed.  1998,  37:  1689 
  • 7a Solladié-Cavallo A. Roje M. Isarno T. Šunjić V. Vinković V. Eur. J. Org. Chem.  2000,  1077 
  • 7b Solladié-Cavallo A. Roje M. Giraud-Roux M. Chen Y. Berova N. Šunjić V. Chirality  2004,  16:  196 
  • 8 Eliel EL. Lynch JE. Kume F. Frye SV. Org. Synth., Coll. 8  1993,  302 
  • 9 Vedejs E. Engler DA. Mullins MJ. J. Org. Chem.  1977,  42:  3109.  Trifluoromethanesulfonic anhydride (2 equiv) was added to a solution of pyridine (2 equiv) in dry CH2Cl2 under argon, cooled to -20 ˚C. After 15 min, benzyl alcohol was added (1 equiv), and after 1 h oxathiane 2 (1 equiv). Stirring was continued at -10 ˚C for 4 h. Water was added, and the mixture extracted with CH2Cl2 (5×). The combined organic extracts were dried over Na2SO4, filtered, and concentrated under vacuum. Pure salt 2 was obtained after washing the crude product with dry Et2O (3×); yield: 68%.
  • 10 Solladié-Cavallo A. Adib A. Schmitt M. Fischer J. DeCian A. Tetrahedron: Asymmetry  1992,  3:  1597 
  • 11 The N-Ts imines were prepared according to: Jennings WB. Lovely CJ. Tetrahedron  1991,  47:  5561 
  • 12 Protecting Groups   Kocieński PJ. Thieme; Stuttgart: 1994.  p.185 
  • The N-SES imines were prepared according to:
  • 13a McKay WR. Proctor GR. J. Chem. Soc., Perkin. Trans. 1  1981,  2435 
  • The N-Boc imines were prepared according to:
  • 13b Kazanawa AM. Denis JN. Greene AE. J. Org. Chem.  1994,  59:  1238 
  • 13c Trost BM. Jaratjaroonphong J. Reutrakul V. J. Am. Chem. Soc.  2006,  128:  2778 
14

N -(1-Naphthylidene)-2-trimethylsilylethanesulfon-amide (15)
A mixture of 1-naphthaldehyde (300 mg, 0.26 mL, 1.91 mmol, 1 equiv), 2-(trimethylsilyl)ethanesulfonamide (415 mg, 2.29 mmol, 1.2 equiv), and anhyd Et3N (1.26 mL, 9.1 mmol, 4 equiv) in anhyd CH2Cl2 (15 mL), under argon, was cooled to 0 ˚C. A TiCl4 solution in CH2Cl2 (1.9 mL of 1 M solution, 1 equiv) was carefully added, and reaction mixture was stirred at 0 ˚C for 1 h, and then at r.t. for 20 h. The reaction mixture was filtered trough Celite, concentrated, and toluene (20 mL) was added to the solid residue. After 10 min of stirring, the mixture was filtered, and the filtrate concentrated under vacuum. The NMR analysis of the crude product 15 showed that it containes 4% of the starting amide and 96% of the imine. The product was found to decompose on silica gel and was used in the next step without further purification (570 mg, w = 98%, yield 89%). ¹H NMR (300 MHz, CDCl3): δ = 0.07 (s, 9 H), 1.09-1.15 (m, 2 H), 3.19-3.25 (m, 2 H), 7.59-7.65 (m, 2 H), 7.71 (td, 1 H, J 1 = 7.7 Hz, J 2 = 1.4 Hz), 7.96 (d, 1 H, J = 8.0 Hz), 8.15 (d, 1 H, J = 8.0 Hz), 8.19 (d, 1 H, J = 7.2 Hz), 9.04 (d, 1 H, J = 8.0 Hz), 9.59 (s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = -2.09, 9.50, 49.01, 124.22, 125.08, 126.95, 127.48, 128.91, 129.03, 131.73, 133.76, 135.22, 136.14, 170.91.

15

2-Phenyl-3-(1-naphthyl)-1-(2-trimethylsilylethane-sulfonyl)-aziridine (21)
To a stirred solution of benzyl sulfonium salt 1 (352 mg, 0.80 mmol, 1 equiv) under argon in anhyd THF (10 mL), cooled to -40 ˚C, NaH dispersion in paraffin (64 mg, w = 60%, 1.6 mmol, 2 equiv) was added. After 1 h, a THF solution (2 mL) of N-(1-naphthylidene)-2-trimethylsilylethanesulfonamide (15, 270 mg, w = 98%, 0.80 mmol, 1 equiv) was dropwise added. The reaction mixture was stirred for 20 h at -40 ˚C. Cold H2O (15 mL) was carefully added, and the mixture was extracted with CH2Cl2 (3 × 10 mL). The combined organic extracts were dried over Na2SO4, filtered, and concentrated under vacuum. The crude product was analyzed by ¹H NMR to determine the diastereomeric ratio and then was purified by column chromatography on silica gel. First fraction contained recovered (R,R,R)-oxathiane 2 (145 mg, 90%);
R f = 0.8 (PE-EtOAc, 8:2).The title compound 21 was isolated as colorless oil (201 mg, 63%); R f = 0.47 (PE-EtOAc, 8:2). Isomers of 21 were separated by chiral HPLC; trans: ee >99% [Chiralcel OD, hexane-EtOAc (90:10), 254 nm, 1 mL/min, t R(minor) = 11.5 min, t R(major) = 14.4 min]; [α]D ²5 +75 (c 1; CH2Cl2). ¹H NMR (300 MHz, CDCl3): δ = -0.05 (s, 9 H), 1.05-1.09 (m, 2 H), 2.94-3.06 (m, 2 H), 4.32 (d, 1 H, J = 4.5 Hz), 4.80 (d, 1 H, J = 4.5 Hz), 7.40-7.56 (m, 5 H), 7.60 (td, 1 H, J 1 = 7.7 Hz, J 2 = 1.1 Hz), 7.64 (d, 2 H, J = 8.1 Hz), 7.68 (d, 1 H, J = 7.1 Hz), 7.88 (d, 1 H, J = 8.1 Hz), 7.91 (d, 1 H, J = 8.1 Hz), 8.25 (d, 1 H, J = 8.1 Hz). ¹³C NMR (75 MHz, CDCl3): δ = -2.16, 9.63, 48.58, 49.49, 50.97, 123.55, 125.19, 125.22, 126.15, 126.70, 128.32, 128.72, 128.81, 128.93, 129.37, 129.60, 132.47, 133.28, 133.55. IR (KBr): 3057, 2950, 1325, 1250, 1145, 932, 843, 796 cm. Anal. Calcd for C23H27NO2SSi (409.62): C, 67.44; H, 6.64; N, 3.42. Found: C, 67.36; H, 7.06; N, 3.50. Cis: ee >99% [Chiralcel OD, hexane-EtOH (90:10), 254 nm, 1 mL/min, t R(minor) = 5.7 min, t R(major) = 8.0 min], [α]D ²5 +197 (c 0.35, CH2Cl2). ¹H NMR (300 MHz, CDCl3): δ = 0.01 (s, 9 H), 1.23-1.29 (m, 2 H), 3.25-3.31 (m, 2 H), 4.39 (d, 1 H, J = 7.2 Hz), 4.67 (d, 1 H, J = 7.2 Hz), 7.01-7.03 (m, 3 H), 7.12-7.17 (m, 2 H), 7.32-7.53 (m, 3 H), 7.58 (d, 1 H, J = 7.1 Hz), 7.70 (d, 1 H, J = 8.1 Hz), 7.77 (d, 1 H, J = 8.1 Hz), 8.04 (d, 1 H, J = 8.1 Hz). ¹³C NMR (75 MHz, CDCl3): δ = -2.11, 9.86, 46.02, 47.27, 49.17, 122.84, 124.84, 125.80, 125.98, 126.31, 127.27, 127.71, 127.78, 127.79, 128.36, 128.50, 131.26, 131.97, 133.08. IR (KBr): 3059, 2950, 1328, 1250, 1145, 911, 841, 804 cm
2-Phenyl-3-(4-methoxyphenyl)-1-( tert -butoxycarbonyl)-aziridine (23) Compound 23 was prepared as above starting from N-(tert-butoxycarbonyl)-4-methoxybenzaldimine (17, 100 mg, 0.42 mmol, 1 equiv), and was isolated as colorless oil after workup and chromatography on neutral alumina, activity I (42 mg, 31%); R f = 0.55 (hexane-EtOAc, 9:1). Product 23 is a cis/trans mixture (9:91), and the assignments are of the major trans-isomer. Trans: ee = 96% [Chiralpak AD, hexane-2-PrOH (92:8), 229 nm, 1 mL/min, t R(major) = 25.7 min, t R(minor) = 28.8 min]. ¹H NMR (300 MHz, CDCl3):
δ = 1.20 (s, 9 H), 3.71 (d, 1 H, J = 3.3 Hz), 3.76 (d, 1 H, J = 3.3 Hz), 3.81 (s, 3 H), 6.89 (d, 2 H, J = 9.1 Hz), 7.27 (d, 2 H, J = 9.1 Hz), 7.32-7.35 (m, 5 H). ¹³C NMR (75 MHz, CDCl3): δ = 27.67, 47.09, 47.73, 55.35, 81.34, 113.91, 126.93, 127.40, 127.98, 128.33, 128.47, 135.87, 159.54, 160.56. IR (KBr): 2926, 1752, 1720, 1608, 1519, 1255, 990, 831 cm.
2-Phenyl-3-(1-naphthyl)-1-( tert -butoxycarbonyl)-aziridine (24)
Compound 24 was prepared as above starting from N-(tert-butoxycarbonyl)-1-naphthaldimine (18, 100 mg, 0.39 mmol, 1 equiv), and was isolated as viscous colorless oil after workup (101 mg, 75%); R f = 0.22 (hexane-EtOAc, 8:2). Even though the crude mixture contained mixture of trans/cis isomers (98:2), after chromatography, only trans-isomer was isolated. Trans: ee = 96% (Chiralcel OJ, hexane-EtOH (95:5), 254 nm, 1 mL/min, t R(minor) = 9.9 min, t R(major) = 12.5 min]. [α]D ²5 +89 (c 2.1, CH2Cl2). ¹H NMR (300 MHz, CDCl3): δ = 1.02 (s, 9 H), 3.85 (d, 1 H, J = 3.5 Hz), 4.47 (d, 1 H, J = 3.5 Hz), 7.37-7.54 (m, 8 H), 7.61 (d,
1 H, J = 6.8 Hz), 7.83 (d, 1 H, J = 8.5 Hz), 7.87-7.89 (m, 1 H), 8.22-8.25 (m, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 27.42, 44.66, 47.18, 81.32, 123.95, 124.18, 125.39, 125.63, 125.97, 126.42, 127.51, 128.33, 128.53, 128.65, 132.01, 132.55, 133.42, 135.04, 160.11. IR (KBr): 3052, 2976, 2926, 1711, 1295, 1148, 779 cm. Anal. Calcd for C23H23NO2 (345.43): C, 79.97; H, 6.71; N, 4.05. Found: C, 79.90; H, 6.50; N, 3.89.