Synthesis 2009(11): 1881-1885  
DOI: 10.1055/s-0028-1088047
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Enantioselective Reduction of Prochiral Ketones Employing Sprouted Pisum sativa as Biocatalyst

Jhillu S. Yadav*, Basi V. Subba Reddy, Chittamuru Sreelakshmi, Adari Bhaskar Rao
Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad 500007, India
Fax: +91(40)27160512; e-Mail: yadavpub@iict.res.in;
Further Information

Publication History

Received 19 January 2009
Publication Date:
14 April 2009 (online)

Abstract

Sprouted green peas have been used for the first time as biocatalysts for enantioselective reduction of prochiral ketones. The reactions are highly enantioselective to furnish chiral alcohols in good yields. The sprouted peas as biocatalysts are a cheap and easy way for generating some interesting chiral alcohols. This process is efficient and convenient to produce chiral secondary alcohols in water.

    References

  • 1a Alfermann A. Biocatalysis in Organic Synthesis   Tramper J. van der Plas H. Linko P. Elsevier; Amsterdam: 1985.  p.25 
  • 1b Plant Cell Culture: A Practical Approach   Dixon RA. IRL Press; Eynsham: 1985. 
  • 2a Jones JB. In Comprehensive Organic Synthesis   Vol. 8:  Fleming I. Trost B. M. Pergamon Press; Oxford: 1991.  p.183 
  • 2b Ward OP. Young CS. Enzyme Microbiol. Technol.  1998,  12:  482 
  • 2c Nayori R. Asymmetric Catalysis in Organic Synthesis   Wiley; New York: 1994. 
  • 3 Ishihara K. Hamada H. Hirata T. Nakajima N. J. Mol. Catal. B: Enzym.  2003,  23:  145 
  • 4 Cordell GA. Lemos TLG. Monte FJQ. de Mattos MC. J. Nat. Prod.  2007,  70:  478 
  • 5 Blanchard N. Weghe PVD. Org. Biomol. Chem.  2006,  4:  2348 
  • 6a Akakabe Y. Takahashi M. Kamezawa M. Kikuchi K. Tachibana H. Ohtani T. Naoshima Y. J. Chem. Soc., Perkin Trans. 1  1995,  1295 
  • 6b Baskar B. Ganesh S. Lokeswari TS. Chadka A. J. Mol. Catal. B: Enzym.  2004,  27:  13 
  • 7a Baldassarre F. Bertoni G. Chiappe C. Marioni F. J. Mol. Catal. B: Enzym.  2000,  11:  55 
  • 7b Yadav JS. Reddy PT. Hashim SR. Synlett  2000,  1049 
  • 7c Yadav JS. Reddy PT. Hashim SR. Synlett  2000,  473 
  • 7d Maczka WK. Mironowicz A. Tetrahedron: Asymmetry  2002,  13:  2299 
  • 8a Stampfer W. Kosjek B. Faber K. Kroutil W. J. Org. Chem.  2003,  68:  402 
  • 8b Gröger H. Hummel W. Rollmann C. Chamouleau F. Hüsken H. Werner H. Wunderlich C. Abokitse K. Drauz K. Buchholz S. Tetrahedron  2004,  60:  633 
  • 8c Edegger K. Stampfer W. Seisser B. Faber K. Mayer SF. Oehrlein R. Hafner A. Kroutil W. Eur. J. Org. Chem.  2006,  1904 
  • 8d Yang Z.-H. Zeng R. Yang G. Wang Y. Li L.-Z. Lv Z.-S. Yao M. Lai B. J. Ind. Microbiol. Biotechnol.  2008,  35:  1047 
  • 9a Yadav JS. Nanda S. Reddy PT. Rao AB. J. Org. Chem.  2002,  67:  3900 
  • 9b Caron D. Coughlan AP. Simard M. Bernier J. Piche Y. Chenevert R. Biotech. Lett.  2005,  27:  713 
  • 9c Scarpi D. Occhiato EG. Guarna A. Tetrahedron: Asymmetry  2005,  16:  1479 
  • 9d Mazczka WK. Mironowicz A. Tetrahedron: Asymmetry  2004,  15:  1965 
  • 9e Comasseto JV. Omori AT. Porto ALM. Andrade LH. Tetrahedron Lett.  2004,  45:  473 
  • 9f Maczka WK. Mironowicz A. Tetrahedron: Asymmetry  2002,  13:  2299 
  • 10 Kumaraswamy G. Ramesh S. Green Chem.  2003,  5:  306 
  • 11a Haslegrave JA. Jones JB. J. Am. Chem. Soc.  1982,  104:  4667 
  • 11b Harada T. Kurokawa H. Kagamihara Y. Tanaka S. Inoue A. Oku A. J. Org. Chem.  1992,  57:  1412 
  • 11c Nunez MT. Martin VS. J. Org. Chem.  1990,  55:  1928 
  • 11d Yadav JS. Reddy BVS. Padmavani B. Venugopal Ch. Rao AB. Tetrahedron Lett.  2007,  48:  4613 
  • 11e Yadav JS. Reddy BVS. Sreelakshmi Ch. Narayana Kumar GGKS. Rao AB. Tetrahedron Lett.  2008,  49:  2768 
  • 12 Prelog V. Pure Appl. Chem.  1964,  9:  119