Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2009(11): 1881-1885
DOI: 10.1055/s-0028-1088047
DOI: 10.1055/s-0028-1088047
PAPER
© Georg Thieme Verlag
Stuttgart ˙ New York
Enantioselective Reduction of Prochiral Ketones Employing Sprouted Pisum sativa as Biocatalyst
Further Information
Received
19 January 2009
Publication Date:
14 April 2009 (online)
Publication History
Publication Date:
14 April 2009 (online)
Abstract
Sprouted green peas have been used for the first time as biocatalysts for enantioselective reduction of prochiral ketones. The reactions are highly enantioselective to furnish chiral alcohols in good yields. The sprouted peas as biocatalysts are a cheap and easy way for generating some interesting chiral alcohols. This process is efficient and convenient to produce chiral secondary alcohols in water.
Key words
biocatalysis - ketones - enantioselective - chiral alcohols
-
1a
Alfermann A. Biocatalysis in Organic SynthesisTramper J.van der Plas H.Linko P. Elsevier; Amsterdam: 1985. p.25 -
1b
Plant
Cell Culture: A Practical Approach
Dixon RA. IRL Press; Eynsham: 1985. -
2a
Jones JB. In Comprehensive Organic Synthesis Vol. 8:Fleming I.Trost B. M. Pergamon Press; Oxford: 1991. p.183 -
2b
Ward OP.Young CS. Enzyme Microbiol. Technol. 1998, 12: 482 -
2c
Nayori R. Asymmetric Catalysis in Organic Synthesis Wiley; New York: 1994. - 3
Ishihara K.Hamada H.Hirata T.Nakajima N. J. Mol. Catal. B: Enzym. 2003, 23: 145 - 4
Cordell GA.Lemos TLG.Monte FJQ.de Mattos MC. J. Nat. Prod. 2007, 70: 478 - 5
Blanchard N.Weghe PVD. Org. Biomol. Chem. 2006, 4: 2348 -
6a
Akakabe Y.Takahashi M.Kamezawa M.Kikuchi K.Tachibana H.Ohtani T.Naoshima Y. J. Chem. Soc., Perkin Trans. 1 1995, 1295 -
6b
Baskar B.Ganesh S.Lokeswari TS.Chadka A. J. Mol. Catal. B: Enzym. 2004, 27: 13 -
7a
Baldassarre F.Bertoni G.Chiappe C.Marioni F. J. Mol. Catal. B: Enzym. 2000, 11: 55 -
7b
Yadav JS.Reddy PT.Hashim SR. Synlett 2000, 1049 -
7c
Yadav JS.Reddy PT.Hashim SR. Synlett 2000, 473 -
7d
Maczka WK.Mironowicz A. Tetrahedron: Asymmetry 2002, 13: 2299 -
8a
Stampfer W.Kosjek B.Faber K.Kroutil W. J. Org. Chem. 2003, 68: 402 -
8b
Gröger H.Hummel W.Rollmann C.Chamouleau F.Hüsken H.Werner H.Wunderlich C.Abokitse K.Drauz K.Buchholz S. Tetrahedron 2004, 60: 633 -
8c
Edegger K.Stampfer W.Seisser B.Faber K.Mayer SF.Oehrlein R.Hafner A.Kroutil W. Eur. J. Org. Chem. 2006, 1904 -
8d
Yang Z.-H.Zeng R.Yang G.Wang Y.Li L.-Z.Lv Z.-S.Yao M.Lai B. J. Ind. Microbiol. Biotechnol. 2008, 35: 1047 -
9a
Yadav JS.Nanda S.Reddy PT.Rao AB. J. Org. Chem. 2002, 67: 3900 -
9b
Caron D.Coughlan AP.Simard M.Bernier J.Piche Y.Chenevert R. Biotech. Lett. 2005, 27: 713 -
9c
Scarpi D.Occhiato EG.Guarna A. Tetrahedron: Asymmetry 2005, 16: 1479 -
9d
Mazczka WK.Mironowicz A. Tetrahedron: Asymmetry 2004, 15: 1965 -
9e
Comasseto JV.Omori AT.Porto ALM.Andrade LH. Tetrahedron Lett. 2004, 45: 473 -
9f
Maczka WK.Mironowicz A. Tetrahedron: Asymmetry 2002, 13: 2299 - 10
Kumaraswamy G.Ramesh S. Green Chem. 2003, 5: 306 -
11a
Haslegrave JA.Jones JB. J. Am. Chem. Soc. 1982, 104: 4667 -
11b
Harada T.Kurokawa H.Kagamihara Y.Tanaka S.Inoue A.Oku A. J. Org. Chem. 1992, 57: 1412 -
11c
Nunez MT.Martin VS. J. Org. Chem. 1990, 55: 1928 -
11d
Yadav JS.Reddy BVS.Padmavani B.Venugopal Ch.Rao AB. Tetrahedron Lett. 2007, 48: 4613 -
11e
Yadav JS.Reddy BVS.Sreelakshmi Ch.Narayana Kumar GGKS.Rao AB. Tetrahedron Lett. 2008, 49: 2768 - 12
Prelog V. Pure Appl. Chem. 1964, 9: 119