Synlett 2009(8): 1277-1280  
DOI: 10.1055/s-0028-1088132
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Palladium-Catalyzed Reaction of Arenediazonium Tetrafluoroborates with Methyl 4-Hydroxy-2-butenoate: An Approach to 4-Aryl Butenolides and an Expeditious Synthesis of Rubrolide E

Sandro Cacchi*, Giancarlo Fabrizi, Antonella Goggiamani, Alessio Sferrazza
Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi ‘La Sapienza’, P. le A. Moro 5, 00185 Rome, Italy
Fax: +39(06)49912780; e-Mail: sandro.cacchi@uniroma1.it;
Further Information

Publication History

Received 10 February 2009
Publication Date:
08 April 2009 (online)

Abstract

The palladium-catalyzed reaction of arenediazonium ­tetrafluoroborates with methyl 4-hydroxy-2-butenoate in MeOH under mild conditions gives 4-arylbutenolides usually in good to high yields through a domino vinylic substitution/cyclization process. The reaction tolerates a variety of useful substituents including the whole range of halogen substituents, nitro, ether, cyano, keto, and ester groups and can be performed as a one-pot process generating the arenediazonium salt in situ. By using this method, the marine antibiotic rubrolide E has been synthesized via an expeditious and efficient sequential protocol that omits the isolation of the butenolide intermediate (two operative steps, 52% overall yield).

    References and Notes

  • 1 For an excellent recent review on the palladium chemistry of arenediazonium salts, see: Roglans A. Pla-Quintana A. Moreno-Mañas M. Chem. Rev.  2006,  106:  4622 
  • For some recent selected references, see:
  • 2a Brunner H. Le Cousturier de Courcy N. Genêt J.-P. Synlett  2000,  201 
  • 2b Cai MZ. Hu RH. Zhou J. Chin. Chem. Lett.  2001,  12:  861 
  • 2c Hu R.-H. Liu X.-L. Cai M.-Z. Jiangxi Shifan Daxue Xuebao, Ziran Kexueban  2001,  25:  246 ; Chem. Abstr. 2001, 136, 355024
  • 2d Darses S. Pucheault M. Genêt J.-P. Eur. J. Org. Chem.  2001,  1121 
  • 2e Sengupta S. Bhattacharyya S. Tetrahedron Lett.  2001,  42:  2035 
  • 2f Andrus MB. Song C. Zhang J. Org. Lett.  2002,  4:  2079 
  • 2g Selvakumar K. Zapf A. Spannenberg A. Beller M. Chem. Eur. J.  2002,  8:  3901 
  • 2h Andrus MB. Ma Y. Zang Y. Song C. Tetrahedron Lett.  2002,  43:  9137 
  • 2i Ma Y. Song C. Chai Q. Ma C. Andrus MB. Synthesis  2003,  2886 
  • 2j Wang C. Tan L.-S. He J.-P. Hu H.-W. Xu J.-H. Synth. Commun.  2003,  33:  773 
  • 2k Masllorens J. Moreno-Mañas M. Pla-Quintana A. Roglans A. Org. Lett.  2003,  5:  1559 
  • 2l Schmidt B. Chem. Commun.  2003,  1656 
  • 2m Nelson ML. Ismail MY. McIntyre L. Bhatia B. Viski P. Hawkins P. Rennie G. Andorsky D. Messersmith D. Stapleton K. Dumornay J. Sheahan P. Verma AK. Warchol T. Levy SB. J. Org. Chem.  2003,  68:  5838 
  • 2n Dai M. Liang B. Wang C. Chen J. Yang Z. Org. Lett.  2004,  6:  221 
  • 2o Kabalka GW. Dong G. Venkataiah B. Tetrahedron Lett.  2004,  45:  2775 
  • 2p Xu L.-H. Zhang Y.-Y. Wang X.-L. Chou J.-Y. Dyes Pigm.  2004,  62:  283 
  • 2q Masllorens J. Bouquillon S. Roglans A. Hénin F. Muzart J. J. Organomet. Chem.  2005,  690:  3822 
  • 2r Farina A. Ferranti C. Marra C. Guiso M. Norcia G. Nat. Prod. Res.  2007,  21:  564 
  • 2s Moro AV. Cardoso FSP. Correia CRD. Tetrahedron Lett.  2008,  49:  5668 
  • For some recent references, see:
  • 3a Severino EA. Costenaro ER. Garcia ALL. Correia CRD. Org. Lett.  2003,  5:  305 
  • 3b Garcia ALL. Correia CRD. Tetrahedron Lett.  2003,  44:  1553 
  • 3c Montes de Oca ACB. Correia CRD. ARKIVOC  2003,  (x):  390 
  • 3d Schmidt B. Chem. Commun.  2003,  1656 
  • 3e Garcia Ariel LL. Carpes MJS. Montes de Oca ACB. dos Santos MAG. Santana CC. Correia CRD. J. Org. Chem.  2005,  70:  1050 
  • 3f Sabino AA. Machado AHL. Correia CRD. Eberlin MN. Angew. Chem. Int. Ed.  2004,  43:  2514 
  • 3g Sabino AA. Machado AHL. Correia CRD. Eberlin MN. Angew. Chem. Int. Ed.  2004,  43:  4389 
  • 3h Pastre JC. Correia CRD. Org. Lett.  2006,  8:  1657 
  • 3i Burtoloso ACB. Garcia ALL. Miranda KC. Correia CRD. Synlett  2006,  3145 
  • 3j Artuso E. Barbero M. Degani I. Dughera S. Fochi R. Tetrahedron  2006,  62:  3146 
  • 3k Meira PRR. Moro AV. Correia CRD. Synthesis  2007,  2279 
  • 3l Peixoto da Silva K. Godoi MN. Correia CRD. Org. Lett.  2007,  9:  2815 
  • 3m Barreto R. Nascimbem LBLR. Correia CRD. Synth. Commun.  2007,  37:  2011 
  • 3n Bartoli G. Cacchi S. Fabrizi G. Goggiamani A. Synlett  2008,  2508 
  • 4 Perez R. Veronese D. Coelho F. Antunes OAC. Tetrahedron Lett.  2006,  47:  1325 
  • 5 Konno T. Yamada S. Tani A. Miyabe T. Ishihara T. Synlett  2006,  3025 
  • 6 Cacchi S. Fabrizi G. Goggiamani A. Persiani D. Org. Lett.  2008,  10:  1597 
  • Ethyl and methyl 4-hydroxy-2-butenoates were prepared according to literature procedures:
  • 7a Rambaud R. Bull. Soc. Chim. Fr.  1934,  1:  1317 
  • 7b Hassner A. Friedman O. Dehaen W. Liebigs Ann./ Recl.  1997,  587 
  • 8a Bezuidenhoudt BCB. Swanepoel A. Brandt EV. Ferreira D. J. Chem. Soc., Perkin Trans. 1  1990,  2599 
  • 8b Miao S. Andersen RJ. J. Org. Chem.  1991,  56:  6275 
  • 8c Miles DH. Chittawong V. Lho D.-S. Payne AM. de la Cruz AA. Gomez ED. Weeks JA. Atwood JL. J. Nat. Prod.  1991,  54:  286 
  • 8d Nohara T. Kinjo J. Furusawa J. Sakai Y. Inoue M. Shirataki Y. Ishibashi Y. Yokoe I. Komatsu M. Phytochemistry  1993,  33:  1207 
  • 8e Cerri A. Mauri P. Mauro M. Melloni P. J. Heterocycl. Chem.  1993,  30:  1581 
  • 8f Tan L. Chen C.-y. Larsen RD. Verhoeven TR. Reider PJ. Tetrahedron Lett.  1998,  39:  3961 
  • 8g Smith CJ. Hettich RL. Jompa J. Tahir A. Buchanan MV. Ireland CM. J. Org. Chem.  1998,  63:  4147 
  • 10 Miao S. Andersen RJ. J. Org. Chem.  1991,  56:  6275 
  • 11 Ortega MJ. Zubia E. Ocana JM. Naranjo S. Salva J. Tetrahedron  2000,  56:  3963 
  • For selected recent syntheses of rubrolides, see:
  • 12a Bellina F. Anselmi C. Stephane V. Mannina L. Rossi R. Tetrahedron  2001,  57:  9997 
  • 12b Bellina F. Anselmi C. Rossi R. Tetrahedron Lett.  2002,  43:  2023 
  • 12c Bellina F. Anselmi C. Manina F. Rossi R. Eur. J. Org. Chem.  2003,  2290 
  • 12d Boukouvalas J. Pouliot M. Synlett  2005,  343 
  • 12e Kar A. Argade NP. Synlett  2005,  2284 
  • 12f Chavan SP. Pathak AB. Pandey A. Kalkote UR. Synth. Commun.  2007,  37:  4253 
  • 13 Doyle MP. Bryker WJ. J. Org. Chem.  1979,  44:  1572 
9

Typical Procedure for the Preparation of Butenolides (3) To a stirred solution of 2b (58.0 mg, 0.50 mmol) and Pd(OAc)2 (5.6 mg, 0.025 mmol) in anhyd MeOH (5.0 mL), 1b (250.0 mg, 1.0 mmol) was added at r.t. under argon. The reaction mixture was warmed at 40 ˚C and stirred at that temperature for 4 h (the reactor was protected from light with aluminum film). After cooling, the reaction mixture was diluted with EtOAc, washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by chromatography on SiO2 [n-hexane-EtOAc, 60:40] to afford 83.9 mg of 3b (77% yield); mp: 192-194 ˚C. IR (KBr): 1745, 1710, 1280 cm. ¹H NMR (400 MHz, CDCl3): δ = 8.15 (d, J = 8.4 Hz, 2 H), 7.60 (d, J = 8.4 Hz, 2 H), 6.21 (t, J = 1.6 Hz, 2 H), 5.16 (d, J = 1.6 Hz, 2 H), 3.97 (s, 3 H). ¹³C NMR (100.6 MHz, CDCl3): δ = 173.2, 166.0, 162.5, 133.6, 132.9, 130.5, 126.5, 115.3, 70.9, 52.6. MS: m/z (%) = 216 (8) [M+], 75 (42), 59 (100).

14

One-Pot Procedure for the Preparation of Butenolides (3) from Anilines
A solution of BF3˙OEt2 (140 µL, 1.1 mmol) in anhyd THF (1 mL) was cooled at -15 ˚C, and 4-carbomethoxylaniline (151.2 mg, 1 mmol) was added. Then, tert-butyl nitrite (160 µL, 1.3 mmol) in 1 mL of the same solvent was added dropwise to the rapidly stirred solution over a 10 min period. After that, the reaction temperature was maintained at -15 ˚C for 10 min, allowed to warm to 5 ˚C (ice-water bath) over a 20 min period, warmed to r.t., and stirred at the same temperature till the disappearance of the starting aniline. The reaction mixture was subsequently concentrated under reduced pressure and diluted with anhyd MeOH (5 mL). Then, 2b (58.0 mg, 0.50 mmol) and Pd(OAc)2 (5.6 mg, 0.025 mmol) were added, the reaction mixture was warmed at 40 ˚C, and stirred at that temperature for 4 h (the reactor was protected from light with aluminum film). After cooling, the reaction mixture was diluted with EtOAc, washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by chromatography on SiO2 [n-hexane-EtOAc, 60:40] to afford 80.0 mg of 3b (73% yield).