Subscribe to RSS
DOI: 10.1055/s-0028-1109128
© Georg Thieme Verlag KG Stuttgart · New York
Clinical Application of MRI in Children for the Assessment of Pulmonary Diseases
Klinische Anwendung von MRT zur Untersuchung von Lungenerkrankungen im KindesalterPublication History
received: 10.12.2008
accepted: 22.12.2008
Publication Date:
07 April 2009 (online)
Zusammenfassung
Das diagnostische Routineverfahren für pulmonale Erkrankungen bei Kindern ist die Röntgenübersichtsaufnahme. Dabei handelt es sich um eine schnell durchzuführende und kostengünstige Untersuchung, die einen guten Überblick über die Anatomie und Pathologien zeigt. Bei Patienten mit unklaren Befunden oder wo eine detaillierte Darstellung der Anatomie nötig ist, z. B. vor Interventionen, wird meistens eine Computertomografie durchgeführt. Dieses Verfahren besitzt zwar eine sehr gute Ortsauflösung, aber nur einen schlechten Weichteilkontrast und zudem ist die applizierte Röntgenstrahlung nicht zu unterschätzen. Aktuell steht mit der Magnet-Resonanz-Tomografie (MRT) ein Verfahren zur Verfügung, mit dem sich ebenfalls schnell und zuverlässig Lungenerkrankungen diagnostizieren lassen. Aufgrund des hohen Weichteilkontrasts kann die Diagnose oftmals ohne Kontrastmittelapplikation gestellt werden. Diese Übersichtsarbeit stellt das Routine-Protokoll unserer Klinik vor. Die Anwendung und Ergebnisse wird bei Patienten mit infektiösen Erkrankungen, Patienten mit Immunschwächen, anatomischen Abnormalitäten, erworbenen chronischen Lungenkrankungen und pulmonalen Tumoren demonstriert. Da die MRT vor allem für funktionelle Untersuchungen gut geeignet ist, wird ein Untersuchungsprotokoll für Thoraxdeformitäten vorgestellt. Diese Übersichtsarbeit demonstriert der Einsatz der Lungen-MRT in der klinischen pädiatrischen Routine mit speziellem Bezug zu klinischen Indikationen als strahlenfreie Methode.
Abstract
The standard examination technique for the chest in children is an X-ray examination – it is fast, cheap and provides a good overview of anatomy and pathology. In cases with an unclear pathology or if more details are needed (i. e. pre-therapeutically), computed tomography is most often performed with the well known drawbacks of limited soft tissue contrast and radiation. Radiation should be avoided in children, especially if follow-up examinations are needed. Recent magnetic resonance (MR) techniques allow for fast and reliable assessment of pulmonary diseases in children. Due to the inherent soft tissue contrast, diagnosis can be frequently performed without contrast media application. This review provides an exemplary MR examination protocol for routine application in pediatric patients. The diagnostic value of MRI is shown in patients with infectious diseases, patients with immunodeficiency, anatomic abnormalities, acquired chronic diseases, and pulmonary tumors. Since MRI is especially suitable for functional imaging, an MR protocol is provided for the examination of thoracic deformities. This review summarizes the use of thoracic MRI in the clinical pediatric setting with special focus on the clinical indications as a radiation-free method.
Key words
Pediatric - Lung - thorax - MR imaging - MR perfusion
References
- 1 Brenner D, Elliston C, Hall E. et al . Estimated risks of radiation-induced fatal cancer from pediatric CT. Am J Roentgenol. 2001; 176 289-296
- 2 Jong P A, Tiddens H A, Lequin M H. et al . Estimation of the radiation dose from CT in cystic fibrosis. Chest. 2008; 133 1289-1291; author reply 1290 – 1291
- 3 Fiel S B, Friedman A C, Caroline D F. et al . Magnetic resonance imaging in young adults with cystic fibrosis. Chest. 1987; 91 181-184
- 4 Carr D H, Oades de P, Trotman-Dickenson B. et al . Magnetic resonance scanning in cystic fibrosis: comparison with computed tomography. Clin Radiol. 1995; 50 84-89
- 5 Puderbach M, Hintze C, Ley S. et al . MR imaging of the chest: A practical approach at 1.5T. Eur J Radiol. 2007; 64 345-355
- 6 Biederer J, Hintze C, Fabel M. MRI of pulmonary nodules: technique and diagnostic value. Cancer Imaging. 2008; 8 125-130
- 7 Puderbach M, Eichinger M, Haeselbarth J. et al . Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients: comparison to thin-section CT and chest x-ray. Invest Radiol. 2007; 42 715-725
- 8 Ley-Zaporozhan J, Ley S, Kauczor H U. Morphological and functional imaging in COPD with CT and MRI: present and future. Eur Radiol. 2008; 18 510-521
- 9 Ley S, Zaporozhan J, Arnold R. et al . Preoperative assessment and follow-up of congenital abnormalities of the pulmonary arteries using CT and MRI. Eur Radiol. 2007; 17 151-162
- 10 Ley-Zaporozhan J, Ley S, Kauczor H U. Proton MRI in COPD. Copd. 2007; 4 55-65
- 11 Hirokawa Y, Isoda H, Maetani Y S. et al . MRI artifact reduction and quality improvement in the upper abdomen with PROPELLER and prospective acquisition correction (PACE) technique. Am J Roentgenol. 2008; 191 1154-1158
- 12 Puderbach M, Eichinger M, Gahr J. et al . Proton MRI appearance of cystic fibrosis: Comparison to CT. Eur Radiol. 2007; 17 716-724
- 13 Hirsch W, Sorge I, Krohmer S. et al . MRI of the lungs in children. Eur J Radiol. 2008; 68 278-288
- 14 Eibel R, Herzog P, Dietrich O. et al . Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. Radiology. 2006; 241 880-891
- 15 Rieger C, Herzog P, Eibel R. et al . Pulmonary MRI – a new approach for the evaluation of febrile neutropenic patients with malignancies. Support Care Cancer. 2008; 16 599-606
- 16 Euler U, Liljestrand G. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand. 1946; 12 301-320
- 17 Gustafsson P M, Aurora P, Lindblad A. Evaluation of ventilation maldistribution as an early indicator of lung disease in children with cystic fibrosis. Eur Respir J. 2003; 22 972-979
- 18 Eichinger M, Puderbach M, Fink C. et al . Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis-initial results. Eur Radiol. 2006; 16 2147-2152
- 19 Allen T C. Pulmonary Langerhans cell histiocytosis and other pulmonary histiocytic diseases: a review. Arch Pathol Lab Med. 2008; 132 1171-1181
- 20 Alavi S, Ashena Z, Paydar A. et al . Langerhans cell histiocytosis manifesting as recurrent simultaneous bilateral spontaneous pneumothorax in early infancy. Pediatr Int. 2007; 49 1020-1022
- 21 Lacronique J, Roth C, Battesti J P. et al . Chest radiological features of pulmonary histiocytosis X: a report based on 50 adult cases. Thorax. 1982; 37 104-109
- 22 Anjorin A, Schmidt H, Posselt H G. et al . Comparative evaluation of chest radiography, low-field MRI, the Shwachman-Kulczycki score and pulmonary function tests in patients with cystic fibrosis. Eur Radiol. 2008; 18 1153-1161
- 23 Toyoda H, Azuma E, Hori H. et al . Successful unrelated BMT in a patient with Kostmann syndrome complicated by pre-transplant pulmonary ‘bacterial’ abscesses. Bone Marrow Transplant. 2001; 28 413-415
- 24 Alibek S, Holter W, Staatz G. Das strahlensensible Kind: Lungen-MRT bei EBV-induzierter Lymphoproliferation beim Nijmegen-Breakage-Syndrom. Röntgenstr Fortschr. 2007; 179 1075-1077
- 25 Findik G, Gezer S, Sirmali M. et al . Thoracotomies in children. Pediatr Surg Int. 2008; 24 721-725
- 26 Mutlu H, Basekim C, Silit E. et al . Gadolinium-Enhanced 3D MRA Findings of Pulmonary Hypoplasia And Aplasia. Am J Roentgenol. 2006; 187 398-403
- 27 Fenchel M, Greil G F, Martirosian P. et al . Three-dimensional morphological magnetic resonance imaging in infants and children with congenital heart disease. Pediatr Radiol. 2006; 36 1265-1272
- 28 Berrocal T, Madrid C, Novo S. et al . Congenital anomalies of the tracheobronchial tree, lung, and mediastinum: embryology, radiology, and pathology. Radiographics. 2004; 24 e17
- 29 Hakulinen A L, Jarvenpaa A L, Turpeinen M. et al . Diffusing capacity of the lung in school-aged children born very preterm, with and without bronchopulmonary dysplasia. Pediatr Pulmonol. 1996; 21 353-360
- 30 Griscom N T, Wheeler W B, Sweezey N B. et al . Bronchopulmonary dysplasia: radiographic appearance in middle childhood. Radiology. 1989; 171 811-814
- 31 Aukland S M, Halvorsen T, Fosse K R. et al . High-resolution CT of the chest in children and young adults who were born prematurely: findings in a population-based study. Am J Roentgenol. 2006; 187 1012-1018
- 32 Mahut B, Blic de J, Emond S. et al . Chest computed tomography findings in bronchopulmonary dysplasia and correlation with lung function. Arch Dis Child Fetal Neonatal Ed. 2007; 92 (06) F 459-464
- 33 Ochiai M, Hikino S, Yabuuchi H. et al . A new scoring system for computed tomography of the chest for assessing the clinical status of bronchopulmonary dysplasia. J Pediatr. 2008; 152 90-95, 95 e91 – e93
- 34 Ley-Zaporozhan J, Puderbach M, Kauczor H U. MR for the evaluation of obstructive pulmonary disease. Magn Reson Imaging Clin N Am. 2008; 16 291-308, ix
- 35 Balassy C, Kulemann V, Hormann M. Malignant pulmonary tumors in children. Radiologe. 2008; 48 (10) 955-961
- 36 McCahon E. Lung tumours in children. Paediatr Respir Rev. 2006; 7 191-196
- 37 Altman R L, Miller W E, Carr D T. et al . Radiographic appearance of bronchial carcinoid. Thorax. 1973; 28 433-434
- 38 Both M, Schultze J, Reuter M. et al . Fast T 1- and T 2-weighted pulmonary MR-imaging in patients with bronchial carcinoma. Eur J Radiol. 2005; 53 478-488
- 39 Schroeder T, Ruehm S G, Debatin J F. et al . Detection of pulmonary nodules using a 2D HASTE MR sequence: comparison with MDCT. Am J Roentgenol. 2005; 185 979-984
- 40 Hierholzer J, Luo L, Bittner R C. et al . MRI and CT in the differential diagnosis of pleural disease. Chest. 2000; 118 604-609
- 41 Kono R, Fujimoto K, Terasaki H. et al . Dynamic MRI of solitary pulmonary nodules: comparison of enhancement patterns of malignant and benign small peripheral lung lesions. Am J Roentgenol. 2007; 188 26-36
- 42 Zou Y, Zhang M, Wang Q. et al . Quantitative investigation of solitary pulmonary nodules: dynamic contrast-enhanced MRI and histopathologic analysis. Am J Roentgenol. 2008; 191 252-259
- 43 Nakagawa Y, Uemura S, Nakaoka T. et al . Evaluation of the Nuss procedure using pre- and postoperative computed tomographic index. J Pediatr Surg. 2008; 43 518-521
- 44 Malek M H, Fonkalsrud E W, Cooper C B. Ventilatory and cardiovascular responses to exercise in patients with pectus excavatum. Chest. 2003; 124 870-882
- 45 Herrmann K A, Zech C, Strauss T. et al . Cine MRI of the thorax in patients with pectus excavatum. Radiologe. 2006; 46 309-316
Dr. Sebastian Ley
Diagnostische und Interventionelle Radiologie, Universitätsklinik Heidelberg
Im Neuenheimer Feld 430
69120 Heidelberg
Germany
Phone: + + 49/62 21/5 63 82 78
Fax: + + 49/62 21/5 62 998
Email: ley@gmx.de