Subscribe to RSS
DOI: 10.1055/s-0028-1109341
© Georg Thieme Verlag KG Stuttgart · New York
Image Data Compression in Diagnostic Imaging: International Literature Review and Workflow Recommendation
Bilddatenkompression in der bildgebenden Diagnostik: Internationale Literaturstudie und Workflow-VorschlagPublication History
received: 12.9.2008
accepted: 10.2.2009
Publication Date:
09 June 2009 (online)
Zusammenfassung
Ziel: Hochvolumige Datensätze der bildgebenden Diagnostik (Direktradiografie, Multi-Slice-CT etc.) sichern die diagnostische Betreuung. Die bildgebende Diagnostik hat als Querschnittsfach Schrittmacherfunktion für effektive Workflow-Szenarien übernommen. Für ein effektives Datenmanagement sind hierfür seit Jahren Konzepte zur Datenkompression diskutiert worden. Im Februar 2008 hat eine Konsensuskonferenz der Deutschen Röntgengesellschaft stattgefunden. Es wurden einzelne Datenkompressionstechniken, Kompressionsfaktoren und deren Organbezug tabellarisch als Empfehlung zusammengestellt. Material und Methoden: Unsere Arbeit gibt eine Gesamtübersicht über den Literaturstand zur Datenkompression, Technologie (JPEG und JPEG 2000) und Organbezug und analysiert unterschiedliche Workflow-Szenarien. Dies war Grundlage der Konsensuskonferenz. Die Studien wurden in 4 Level (0 – 3) in Abhängigkeit zu ihrer Evidenz eingeteilt. Für den höchsten Level 3 konnten 51 Studien ausgewertet werden. Ergebnisse: Mit Ausnahme der Schädel-CT wird ein einheitlicher Kompressionsfaktor von 1 : 8 empfohlen. Schädel-CT können ohne diagnostischen Qualitätsverlust mit einem Kompressionswert von 1:5 komprimiert werden. Aus Workflow-Sicht empfehlen wir, Kompressionen an den Modalitäten (CT etc.) vorzunehmen. PACS-basierte Kompressionen sind jedoch derzeit üblich. In diesen Fällen werden allerdings nicht alle Workflow-Vorteile genutzt. Schlussfolgerung: Aus der Literaturübersicht hinsichtlich Technik, Organbezug und unserer Empfehlung zum Workflow ergibt sich die Forderung an die Industrie, die bildgebenden Modalitäten mit einem Kompressionsfilter auszustatten. Es gilt, dass grundsätzlich pro Bilddatensatz nur einmal komprimiert wird.
Abstract
Purpose: Today healthcare policy is based on effectiveness. Diagnostic imaging became a ”pacesetter” due to amazing technical developments (e. g. multislice CT), extensive data volumes, and especially the well defined workflow-orientated scenarios on a local and (inter)national level. To make centralized networks sufficient, image data compression has been regarded as the key to a simple and secure solution. In February 2008 specialized working groups of the DRG held a consensus conference. They designed recommended data compression techniques and ratios. Material und Methoden: The purpose of our paper is an international review of the literature of compression technologies, different imaging procedures (e. g. DR, CT etc.), and targets (abdomen, etc.) and to combine recommendations for compression ratios and techniques with different workflows. The studies were assigned to 4 different levels (0 – 3) according to the evidence. 51 studies were assigned to the highest level 3. Results: We recommend a compression factor of 1 : 8 (excluding cranial scans 1:5). For workflow reasons data compression should be based on the modalities (CT, etc.). PACS-based compression is currently possible but fails to maximize workflow benefits. Only the modality-based scenarios achieve all benefits. Conclusion: Imaging equipment manufacturers are encouraged to improve the compression technology of their imaging devices (e. g. freely selectable compression ratios in the output filter). Double compression should be strictly avoided. Lossless compression formats should be switched off.
Key words
compression - wavelet - jpeg 2000 - image data - workflow - image device
References
- 1 Braunschweig R, Geis I, Tolksdorf D. et al . DACS – Data Archiving and Communication Services. Zentrale Archivierung von Krankenhausdaten – ein ASP-Projekt. MedR. 2004; 5 353-359
- 2 Braunschweig R, Geis I, Tolksdorf D. DACS – Zentrale Krankenhausdatenarchivierung und -kommunikation – ein ASP-Konzept. Telemedizinführer Deutschland. 2005 / 2006; 192-194
- 3 Braunschweig R, Kaden I, Schwarzer J. Activity Based Costing eines RIS/PACS. Management und Krankenhaus. 2003; 3 12
- 4 Braunschweig R, Kaden I, Schwarzer J. et al . Digitalisierung am Klinikum Bergmannstrost – zukunftsweisende Strategien am Beispiel eines RIS/PACS. Krankenhaus-IT-Journal. 2003; 5 14-15
- 5 Braunschweig R, Kaden I, Berend A. Vom RIS/PACS zum MIS/DACS – Eine Effektivitätsstrategie. Telemedizinführer Deutschland. 2006 / 2007; 157-161
- 6 Breeuwer M, Heusdens R, Gunnewiek R K. et al . Data compression of x-ray cardio-angiographic image series. Int J Card Imaging. 1995; 11 179-186
- 7 Moura L, Furuie S S, Gutierrez M A. et al . Lossy compression techniques, medical images, and the clinician. MD Comput. 1996; 13 155-159, 172
- 8 Okkalides D, Efremides S. Quality assessment of DSA, ultrasound and CT digital images compressed with the JPEG protocol. Phy Med Biol. 1994; 39 1407-1421
- 9 Tuinenburg J C, Koning G, Hekking E. et al . American College of Cardiology/European Society of Cardiology International Study of Angiographic Data Compression Phase II: the effects of varying JPEG data compression levels on the quantitative assessment of the degree of stenosis in digital coronary angiography. Joint Photographic Experts Group. J Am Coll Cardiol. 2000; 35 1380-1387
- 10 Loose R, Braunschweig R, Kotter E. et al . Kompression Digitaler Bilddaten in der Radiologie-Ergebnisse einer Konsensuskonferenz. Fortschr Röntgenstr. 2009; 181 32-37
- 11 Azpiroz-Leehan J, Leder R, Lerallut J F. Quantitative and qualitative evaluation of filter characteristics for wavelet packet compression of MR images. Conf Proc IEEE Eng Med Biol Soc. 2004; 2 1537-1540
- 12 Baker W A, Hearne S E, Spero L A. et al . Lossy (15:1) JPEG compression of digital coronary angiograms does not limit detection of subtle morphological features. Circulation. 1997; 96 1157-1164
- 13 Brennecke R, Bürgel U, Simon R. et al . American College of Cardiology/European Society of Cardiology International Study of Angiographic Data Compression Phase III: measurement of image quality differences at varying levels of data compression. J Am Coll Cardiol. 2000; 35 1388-1397
- 14 Cahill P T, Vullo T, Hu J H. et al . Radiologist evaluation of a multispectral image compression algorithm for magnetic resonance images. J Digit Imaging. 1998; 11 126-136
- 15 Chen T J, Chuang K S, Chiang Y C. et al . A statistical method for evaluation quality of medical images: a case study in bit discarding and image compression. Comput Med Imaging Graph. 2004; 28 167-175
- 16 Cosman P C, Davidson H C, Bergin C J. et al . Thoracic CT images: effect of lossy image compression on diagnostic accuracy. Radiology. 1994; 190 517-524
- 17 DeAngelis G A, Dempsey B, Berr S. et al . Diagnostic efficacy of compressed digitized real-time sonography of uterine fibroids. Acad Radiol. 1997; 4 83-89
- 18 Eraso F E, Analoui M, Watson A B. et al . Impact of lossy compression on diagnostic accuracy of radiographs for periapical lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002; 93 621-625
- 19 Erickson B J, Manduca A, Persons K R. et al . Evaluation of irreversible compression of digitized posterior-anterior chest radiographs. J Digit Imaging. 1997; 10 97-102
- 20 Fidler A, Likar B, Pernus F. et al . Impact of JPEG lossy image compression on quantitative digital subtraction radiography. Dentomaxillofac Radiol. 2002; 31 106-112
- 21 Fidler A, Likar B, Pernus F. et al . Comparative evaluation of JPEG and JPEG2000 compression in quantitative digital subtraction radiography. Dentomaxillofac Radiol. 2002; 31 379-384
- 22 Frank M S, Lee H, Kim Y. et al . Evaluation of a combined two- and three-dimensional compression method using human visual characteristics to yield high-quality 10:1 compression of cranial computed tomography scans. Invest Radiol. 1994; 29 842-847
- 23 Goldberg M A, Pivovarov M, Mayo-Smith W W. et al . Application of wavelet compression to digitized radiographs. Am J Roentgenol. 1994; 163 463-468
- 24 Goldberg M A, Gazelle G S, Boland G W. et al . Focal hepatic lesions: effect of three-dimensional wavelet compression on detection at CT. Radiology. 1997; 202 159-165
- 25 Halpern E J, Levy H M, Newhouse J H. et al . Quadtree-based data compression of abdominal CT images. Invest Radiol. 1990; 25 31-38
- 26 Janhom A, Stelt P F, Sanderink G C. A comparison of two compression algorithms and the detection of caries. Dentomaxillofac Radiol. 2002; 31 257-263
- 27 Kalyanpur van der A, Neklesa V P, Taylor C R. et al . Evaluation of JPEG and wavelet compression of body CT images for direct digital teleradiologic transmission. Radiology. 2000; 217 772-779
- 28 Karson T H, Chandra S, Morehead A J. et al . JPEG compression of digital echocardiographic images: impact on image quality. J Am Soc Echocardiogr. 1995; 8 306-318
- 29 Kerensky R A, Cusma J T, Kubilis P. et al . American College of Cardiology/European Society of Cardiology international study of angiographic data compression phase I. The effects of lossy data compression on recognition of diagnostic features in digital coronary angiography. Eur Heart J. 2000; 21 668-678
- 30 Kihara Y. Evaluation of diagnostic accuracy of CRT monitor display for personal computer in the detection of small lung nodules: with particular emphasis on comparison between JPEG and wavelet compression (Article in Japanese). Nippon Igaku Hoshasen Gakkai Zasshi. 2001; 61 231-237
- 31 Ko J P, Chang J, Bomsztyk E. et al . Effect of CT image compression on computer-assisted lung nodule volume measurement. Radiology. 2005; 237 83-88 (Epub 2005 Aug 26)
- 32 Ko J P, Rusinek H, Naidich D P. et al . Wavelet compression of low-dose chest CT data: effect on lung nodule detection. Radiology. 2003; 228 70-75 (Epub 2003 May 29)
- 33 Kocsis O, Costaridou L, Varaki L. et al . Visually lossless threshold determination for microcalcification detection in wavelet compressed mammograms. Eur Radiol. 2003; 13 2390-2396 (Epub 2003 Feb 15)
- 34 Kondo Y. Medical image transfer for emergency care utilizing internet and mobile phone. Nippon Hoshasen Gijutsu Gakkai Zasshi. 2002; 58 1393-1401
- 35 Koning G, Béretta P, Zwart P. et al . Effect of lossy data compression on quantitative coronary measurements. Int J Card Imaging. 1997; 13 261-270
- 36 Kotter E, Roesner A, Torsten Winterer J. et al . Evaluation of Lossy data compression of chest X-rays: a receiver operating characteristic study. Invest Radiol. 2003; 38 243-249
- 37 Lee K H, Kim Y H, Kim B H. et al . Irreversible JPEG 2000 compression of a abdominal CT for primary interpretation: assessment of visually lossless threshold. Eur Radiol. 2007; 17 1529-1534 (Epub 2006 Nov 22)
- 38 Li F, Sone S, Takashima S. et al . Effects of JPEG and wavelet compression of spiral low-dose ct images on detection of small lung cancers. Acta Radiol. 2001; 42 156-160
- 39 Megibow A J, Rusinek H, Lisi V. et al . Computed tomography diagnosis utilizing compressed image data: an ROC analysis using acute appendicitis as a model. J Digit Imaging. 2002; 15 84-90 (Epub 2002 Sep 26)
- 40 Ohgiya Y, Gokan T, Nobusawa H. et al . Acute cerebral infarction: effect of JEPG compression on detection at CT. Radiology. 2003; 227 124-127 (Epub 2003 Feb 19)
- 41 Penedo M, Souto M, Tahoces P G. et al . Free-response receiver operating characteristic evaluation of lossy JPEG2000 and object-based set partitioning in hierarchical trees compression of digitized mammograms. Radiology. 2005; 237 450-457
- 42 Persons K R, Hangiandreou N J, Charboneau N T. et al . Evaluation of irreversible JPEG compression for a clinical ultrasound practice. J Digit Imaging. 2002; 15 15-21 (Epub 2002 Apr 30)
- 43 Ricke J, Maass P, Lopez Hänninen E. et al . Wavelet versus JPEG (Joint Photographic Expert Group) and fractal compression. Impact on the detection of low-contrast details in computed radiographs. Invest Radiol. 1998; 33 456-463
- 44 Ringl H, Schernthaner R E, Kulinna-Cosentini C. et al . Lossy Three-dimensional JPEG2000 Compression of Abdominal CT Images: Assessment of the Visually Lossless Threshold and Effect of Compression Ratio on Image Quality. Radiology. 2007; Epub ahead of print
- 45 Ringl H, Schernthaner R E, Bankier A A. et al . JPEG2000 compression of thin-section CT images of the lung: effect of compression ratio on image quality. Radiology. 2006; 240 869-877 (Epub 2006 Jul 25)
- 46 Savcenko V, Erickson B J, Persons K R. et al . An evaluation of JPEG and JPEG 2000 irreversible compression algorithms applied to neurologic computed tomography and magnetic resonance images. Joint Photographic Experts Group. J Digit Imaging. 2000; 13 183-185
- 47 Savcenko V, Erickson B J, Persons K R. et al . An evaluation of JPEG and JPEG 2000 irreversible compression algorithms applied to neurologic computed tomography and magnetic resonance images. Joint Photographic Experts Group. J Digit Imaging. 2000; 13 183-185
- 48 Slone R M, Foos D H, Whiting B R. et al . Assessment of visually lossless irreversible image compression: comparison of three methods by using an image-comparison workstation. Radiology. 2000; 215 543-553
- 49 Slone R M, Muka E, Pilgram T K. Irreversible JPEG compression of digital chest radiographs for primary interpretation: assessment of visually lossless threshold. Radiology. 2003; 228 425-429
- 50 Sung M M, Kim H J, Yoo S K. et al . Clinical evaluation of compression ratios using JPEG2000 on computed radiography chest images. J Digit Imaging. 2002; 15 78-83 (Epub 2002 Sep 26)
- 51 Suryanarayanan S, Karellas A, Vedantham S. et al . A perceptual evaluation of JPEG 2000 image compression for digital mammography: contrast-detail characteristics. J Digit Imaging. 2004; 17 64-70
- 52 Toney M O, Dominguez R, Dao H N. et al . The effect of lossy discrete cosine transform compression on subtle bone fractures. J Digit Imaging. 1997; 10 169-173
- 53 Tuinenburg J C, Koning G, Hekking E. et al . American College of Cardiology/European Society of Cardiology international study of angiographic data compression phase II. The effects of varying JPEG data compression levels on the quantitative assessment of the degree of stenosis in digital coronary angiography. Eur Heart J. 2000; 21 679-686
- 54 Woo H S, Kim K J, Kim T J. et al . JPEG 2000 compression of abdominal CT: difference in tolerance between thin- and thick-section images. Am J Roentgenol. 2007; 189 535-541
- 55 Yamamoto S, Johkoh T, Mihara N. et al . Evaluation of compressed lung CT image quality using quantitative analysis. Radiat Med. 2001; 19 321-329
- 56 Yin F F, Gao Q. Oncolgic image compression using both waveletand maskin techniques. Med Phys. 1997; 24 2038-2042
- 57 Zalis M E, Hahn P F, Arellano R S. et al . CT colonography with teleradiology: effect of lossy wavelet compression on polyp detection – initial observations. Radiology. 2001; 220 387-392
- 58 Zheng L M, Sone S, Itani Y. et al . Effect of CT digital image compression on detection of coronary artery calcification. Acta Radiol. 2000; 41 116-121
Dr. Ingmar Kaden
Klinik für Bildgebende Diagnostik und Interventionsradiologie, BG-Kliniken Bergmannstrost Halle
Merseburger Straße 165
06112 Halle
Germany
Phone: ++ 49/3 45/1 32 61 84
Fax: ++ 49/3 45/1 32 61 86
Email: Ingmar.Kaden@Bergmannstrost.com