Zusammenfassung
Ziel: Die MRT-Diagnostik von Transplantatnieren sollte unter Berücksichtigung der Nekrotisierenden
Systemischen Fibrose wenn möglich ohne MR-Kontrastmitteln erfolgen. Die vorliegende
Studie untersucht die klinische Wertigkeit der mono- und biexponentiellen Analyse
der Diffusionsbildgebung (DWI). Material und Methoden: Vier Gruppen, a) Probanden mit stabiler Transplantatfunktion, b) mit akuter Funktionsverschlechterung,
c) frisch Transplantierte (< 14 Tage) mit guter und d) mit schlechter Transplantatfunktion
wurden differenziert und 32 Patienten in die Studie eingeschlossen. Protokoll: 1,5
T-MRT (Magnetom Avanto, Siemens Medical Solutions) mit T 2w ax., T 1w kor. und einer
DWI mit 16 b-Werten (b = 0 – 750 s/mm2 ). Die regionenbasierte Analyse der Nierenrinde erfolgte mit dem Programm Table Curve
2D. Ergebnisse: Die monoexponentielle Auswertung (ADCmono ) ergab für a) 1961 ± 104, b) 1801 ± 150, c) 2053 ± 169 und (d) 1720 ± 191 10–6 mm2 /s. Die ADCmono der Gruppen a und b (p < 0,006) sowie c und d (p < 0,04) waren signifikant unterschiedlich.
Die biexponentielle Auswertung zeigte immer die mathematisch höhere Genauigkeit. Die
durchschnittliche Perfusionsfraktion war a) 0,21, b) 0,23, c) 0,32 und d) 0,24. Die
Unterschiede des Diffusions- (ADCD ) und Perfusionsanteils (ADCP ) zwischen den Gruppen erreichte keine statistische Signifikanz. Schlussfolgerung: Die DWI ermöglicht eine nicht invasive funktionelle Untersuchung von Transplantatnieren.
Die ADCmono der Nierenrinde korreliert mit der Transplantatfunktion. Ob die mathematisch genauere
biexponentielle ADC-Auswertung weitere klinisch relevante Informationen liefert, sollte
in größeren Studien beurteilt werden.
Abstract
Purpose: Contrast-enhanced MRI is considered problematic in renal allograft recipients due
to the association of gadolinium administration and the development of NSF. Therefore,
we assessed the clinical value of mono- and biexponential analysis of diffusion-weighted
imaging (DWI). Materials and Methods: A total of 32 patients were divided into four groups: (a) patients with stable function
of renal allograft for at least 6 months, (b) patients with acute deterioration of
allograft function, patients who recently underwent transplantation (< 14 days) with
good (c) or decreased (d) renal function. T 2w ax. and T 1w cor. and a diffusion-weighted
sequence with 16 b-values (b = 0 – 750 s/mm2 ) were performed on a 1.5 T scanner (Magnetom Avanto, Siemens Medical Solutions).
ROI-based analysis of the renal cortex was analyzed using the software ”Table Curve
2D”. Results: Monoexponential analysis showed an ADCmono of 1961 ± 104 1801 ± 150, 2053 ± 169 and 1720 ± 191 10–6 mm2 /sec for patient group a, b, c and d respectively. The difference in ADCmono between group (a) and (b) (p < 0.006) and between group (c) and (d) (p < 0.04) was
statistically significant. Biexponential analysis revealed a mean perfusion fraction
of 0.21, 0.23, 0.32 and 0.24 for group (a), (b), (c) and (d), respectively. Biexponential
ADC showed a higher numerical accuracy. There were no statistically significant inter-group
differences in diffusion (ADCD ) and perfusion (ADCP ). Conclusion: Unenhanced evaluation of renal allografts with DWI is feasible. ADCmono of renal cortex correlates with renal function. The significance of the higher numerical
accuracy of biexponential analysis in clinical settings requires further evaluation
in larger-scale studies.
Key words
MR diffusion/perfusion - abdomen - MR functional imaging
Literatur
1
Cowper S E.
Nephrogenic systemic fibrosis: the nosological and conceptual evolution of nephrogenic
fibrosing dermopathy.
Am J Kidney Dis.
2005;
46
763-765
2
Heinrich M, Uder M.
Nephrogene systemische Fibrose nach Anwendung gadoliniumhaltiger Kontrastmittel –
ein Statuspapier zum aktuellen Stand des Wissens.
Fortschr Röntgenstr.
2007;
179
613-617
3
Cowper S E, Robin H S, Steinberg S M. et al .
Scleromyxoedema-like cutaneous disease in renal-dialysis patients.
Lancet.
2000;
356
1000-1001
4
Shellock F G, Spinazzi A.
MRI Safety Update 2008: Part I, MRI Contrast Agents and Nephrogenic Systemic Fibrosis.
AJR.
2008;
191
1129-1139
5
Kim J K, Kim K A, Park B W. et al .
Feasibility of diffusion-weighted imaging in the differentiation of metastatic from
nonmetastatic lymph nodes: early experience.
J Magn Reson Imaging.
2008;
28
714-719
6
Lin G, Ho K C, Wang J J. et al .
Detection of lymph node metastasis in cervical and uterine cancers by diffusion-weighted
magnetic resonance imaging at 3 T.
J Magn Reson Imaging.
2008;
28
128-135
7
Kwee T C, Takahara T, Koh D M. et al .
Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered,
and free-breathing diffusion-weighted MR imaging of the liver.
J Magn Reson Imaging.
2008;
28
1141-1148
8
Goshima S, Kanematsu M, Kondo H. et al .
Diffusion-weighted imaging of the liver: optimizing b value for the detection and
characterization of benign and malignant hepatic lesions.
J Magn Reson Imaging.
2008;
28
691-697
9
Bohlscheid A, Nuss D, Lieser S. et al .
Tumorsuche mittels kernspintomografischer Diffusionsbildgebung – Erste Erfahrungen.
Fortschr Röntgenstr.
2008;
180
302-309
10
Ohno Y, Koyama H, Onishi Y. et al .
Non-small cell lung cancer: whole-body MR examination for M-stage assessment – utility
for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT.
Radiology.
2008;
248
643-654
11
Le Bihan D, Breton E, Lallemand D. et al .
Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging.
Radiology.
1988;
168
497-505
12
Yablonskiy D A, Bretthorst G L, Ackerman J J.
Statistical model for diffusion attenuated MR signal.
Magn Reson Med.
2003;
50
664-669
13
Le Bihan D, Breton E, Lallemand D. et al .
Contribution of intravoxel incoherent motion (IVIM) imaging to neuroradiology.
J Neuroradiol.
1987;
14
295-312
14
Le Bihan D, Breton E, Lallemand D. et al .
MR imaging of intravoxel incoherent motions: application to diffusion and perfusion
in neurologic disorders.
Radiology.
1986;
161
401-407
15
Le Bihan D, Turner R, Douek P. et al .
Diffusion MR Imaging: Clinical Applications.
AJR.
1992;
159
591-599
16
Turner R, Le Bihan D, Maier J. et al .
Echo-Planar Imaging of Intravoxel incoherent Motion.
Radiology.
1990;
177
407-414
17
Thoeny H C, Zumstein D, Simon-Zoula S. et al .
Functional Evaluation of Transplanted Kidneys with Diffusion-weighted and BOLD MR
Imaging: Initial Experience.
Radiology.
2006;
241
812-821
18
Wittsack H J, Ritzel A, Mödder U.
Benutzerfreundliche Auswertung von MR-Untersuchungen der zerebralen Perfusion: Windows
basierte Bildverarbeitung.
Fortschr Röntgenstr.
2002;
174
742-746
19
Thoeny H C, De Keyzer F, Oyen R H. et al .
Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal
diseases: initial experience.
Radiology.
2005;
235
911-917
20
Carbone S F, Gaggioli E, Ricci V. et al .
Diffusion-weighted magnetic resonance imaging in the evaluation of renal function:
a preliminary study.
Radiol Med.
2007;
112
1201-1210, Epub 2007
21
Namimoto T, Yamashita Y, Mitsuzaki K. et al .
Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion-weighted
echo-planar MR imaging.
J Magn Reson Imaging.
1999;
9
832-837
22
Yildirim E, Kirbas I, Teksam M. et al .
Diffusion-weighted MR imaging of kidneys in renal artery stenosis.
Eur J Radiol.
2008;
65
148-153
23
Notohamiprodjo M, Glaser C, Herrmann K A. et al .
Diffusion tensor imaging of the kidney with parallel imaging: initial clinical experience.
Invest Radiol.
2008;
43
677-685
24
Yang D, Ye Q, Williams D S. et al .
Normal and transplanted rat kidneys: diffusion MR imaging at 7T.
Radiology.
2004;
231
702-709
25
Pedersen M, Wen J G, Shi Y. et al .
The effect of unilateral ureteral obstruction on renal function in pigs measured by
diffusion-weighted MRI.
APMIS.
2003;
109
29-34
26
Sheehan S J, Moran K T, Dowsett D J. et al .
Renal haemodynamics and prostaglandin synthesis in partial unilateral ureteric obstruction.
Urol Res.
1994;
22
279-285
27
Michaely H J, Schoenberg S O, Oesingmann N. et al .
Renal Artery Stenosis: Functional Assessment with Dynamic MR Perfusion Measurements
– Feasibility Study.
Radiology.
2006;
238
586-596
Dr. Dirk Blondin
Institut für Radiologie, Uniklinikum Düsseldorf
Moorenstr. 5
40225 Düsseldorf
Telefon: ++ 49/2 11/8 11 77 54
Fax: ++ 49/2 11/8 11 94 87
eMail: blondin@med.uni-duesseldorf.de