Subscribe to RSS
DOI: 10.1055/s-0028-1109817
© Georg Thieme Verlag KG Stuttgart · New York
In Vivo Imaging of MSCT and Micro-CT: a Comparison
In-vivo-Bildgebung mittels MSCT und Mikro-CT: eine vergleichende StudiePublication History
received: 6.7.2009
accepted: 31.8.2009
Publication Date:
27 October 2009 (online)

Zusammenfassung
Ziel: Evaluation der neuen Mikro-CT-Technik sowie der etablierten Multislice-CT-Technik (MSCT) zur genauen Abgrenzung experimenteller Gliome bei Ratten im Vergleich zum Goldstandard Histologie (Fluoreszenzfärbung). Material und Methoden: Bei 14 Fischerratten wurden stereotaktisch F 98-Gliomzellen in die rechten Basalganglien implantiert. 10 Tage später wurden die Tiere nach Gabe der doppelten Dosis Iomeprol i. v. mittels Mikro-CT und MSCT untersucht und das Volumen des kontrastmittelanreichernden Tumorsanteils planimetriert. Die CT-basierten Volumina wurden dann mit dem histologischen (Fluoreszenz) Tumorvolumen verglichen. Ergebnisse: Es zeigte sich eine gute Korrelation der Tumorvolumina der µCT-Messung (69 ± 23 mm3) mit der Histologie (81 ± 14 mm3; p > 0,14). Die MSCT zeigte jedoch deutlich kleinere Tumoren (55 ± 25 mm3) verglichen mit der Histologie (p < 0,01), allerdings konnte diese Technik die Tumoren bei allen Tieren sicher abgrenzen. Schlussfolgerung: µCT-Systeme erlauben eine In-vivo-Darstellung der kontrastmittelanreichernden Teile von experimentellen Gliomen mit guter Korrelation zur Histologie. Obwohl die MSCT weniger dazu geeignet ist, das exakte Tumorvolumen zu bestimmen, konnte mit dieser Technik das implantierte Gliom zuverlässig nachgewiesen werden. Aufgrund ihrer hohen räumlichen Auflösung könnten µCT-Systeme eine wertvolle Rolle bei der Kleintier-Fusionsbildgebung spielen (µCT/PET- oder µCT/MR-Fusion).
Abstract
Purpose: To evaluate the potential of MSCT and a novel µCT system to assess the volume of malignant brain tumors in rats compared to histology. Materials and Methods: Fourteen rats underwent stereotactic implantation of GFP-marked F 98-glioma cells. On day 10 after implantation, animals received double-dose contrast-enhanced µCT and MSCT imaging using Iomeprol. MSCT- and µCT-derived tumor volumes were calculated and compared to histology (fluorescence staining) as the gold standard. Results: There was good correlation between the µCT-derived tumor volume (69 ± 23 mm3) and histology (81 ± 14 mm3; p > 0.14). MSCT, however, showed significantly smaller tumor volumes (55 ± 25 mm3) compared to histology (p < 0.01) but was able to detect the tumors in all animals. Conclusion: µCT allows in vivo imaging of the contrast-enhancing parts of experimental gliomas with high correlation to histology. Although MSCT is less suitable for assessing exact tumor volume, this method reliably detects tumors in rats. Due to the high spatial resolution, µCT-systems could play an important role for fusion imaging, e. g. to assess experimental brain gliomas with multimodal µCT/PET- or µCT/MRI-fusion images.
Key words
brain - CT - micro-CT - MSCT - glioma
References
- 1
Berens M E, Giese A.
”…those left behind.” Biology and oncology of invasive glioma cells.
Neoplasia.
1991;
1
208-219
Reference Ris Wihthout Link
- 2
Deimling von A, Louis D N, Wiestler O D.
Molecular pathways in the formation of gliomas.
Glia.
1995;
15
328-338
Reference Ris Wihthout Link
- 3
Pilkington G J, Bjerkvig R, De Ridder L. et al .
In vitro and in vivo models for the study of brain tumour invasion.
Anticancer Res.
1997;
17
4107-4109
Reference Ris Wihthout Link
- 4
Psarros T G, Mickey B, Giller C.
Detection of experimentally induced brain tumors in rats using high-resolution computed
tomography.
Neurol Res.
2005;
27
57-59
Reference Ris Wihthout Link
- 5
Ritman E L.
Micro-computed tomography – current status and developments.
Annu Rev Biomed Eng.
2004;
6
185-208
Reference Ris Wihthout Link
- 6
Stiller W, Kobayashi M, Koike K. et al .
Initial experience with a Novel Low-Dose Micro-CT System.
Fortschr Röntgenstr.
2007;
179
669-675
Reference Ris Wihthout Link
- 7
Mohr A, Heiss C, Bergmann I. et al .
Value of Micro-CT as an investigative tool for osteochondritis dissecans.
Acta Radiol.
2003;
44
532-537
Reference Ris Wihthout Link
- 8
Boone J M, Velazquez O, Cherry S R.
Small-animal X-ray dose from micro-CT.
Molecular Imaging.
2005;
3
149-158
Reference Ris Wihthout Link
- 9
Badea C T, Fubara B, Hedlund L W. et al .
4D micro-CT of the mouse heart.
Molecular Imaging.
2005;
4
110-116
Reference Ris Wihthout Link
- 10
Liang H, Yang Y, Yang K. et al .
A microPET/CT system for in vivo small animal imaging.
Phys Med Biol.
2007;
52
3881-3894
Reference Ris Wihthout Link
- 11
Ballyns J J, Gleghorn J P, Niebrzydowski V. et al .
Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT
using injection molding.
Tissue Eng Part A.
2008;
14
1195-1202
Reference Ris Wihthout Link
- 12
Crespigny de A, Bou-Reslan H, Nishimura M C. et al .
3D micro-CT imaging of the post-mortem brain.
J Neurosci Meth.
2008;
171
207-213
Reference Ris Wihthout Link
- 13
Hurlock G S, Higashino H, Mochizuki T.
History of cardiac computed tomography: single to 320-detector row multislice computed
tomography.
Int J Cardiovasc Imaging.
2009;
25
31-42
Reference Ris Wihthout Link
- 14
Reifenberger G, Bilzer T, Seitz R J. et al .
Expression of vimentin and glial fibrillary acidic protein in ethylnitrosourea-induced
rat gliomas and glioma cell lines.
Acta Neuropathol.
1989;
78
270-282
Reference Ris Wihthout Link
- 15
Barth R F.
Rat brain tumor models in experimental neuro-oncology: The 9L, C 6, T 9, F 98, RG
2 (D74), RT-2 and CNS-1 Gliomas.
J Neurooncol.
1998;
36
91-102
Reference Ris Wihthout Link
- 16
Kim B, Chenevert T L, Ross B D.
Growth kinetics and treatment response of the intracerebral rat 9L brain tumor model:
a quantitative in vivo study using magnetic resonance imaging.
Clin Cancer Res.
1995;
1
643-650
Reference Ris Wihthout Link
- 17
Thorsen F, Ersland L, Nordli H.
Imaging of experimental rat gliomas using a clinical MR scanner.
J Neurooncol.
2003;
63
225-231
Reference Ris Wihthout Link
- 18
Herold V, Mörchel P, Faber C. et al .
In vivo quantitative three-dimensional motion mapping of the murine myocardium with
PC-MRI at 17.6 T.
Magn Reson Med.
2006;
55
1058-1064
Reference Ris Wihthout Link
- 19
Jan M L, Chuang K S, Chen G W. et al .
A three-dimensional registration method for automated fusion of micro PET-CT-SPECT
whole-body images.
IEEE Transactions on Medical Imaging.
2005;
24
886-893
Reference Ris Wihthout Link
Dr. Tobias Engelhorn
Dept. of Neuroradiology, University of Erlangen-Nuremberg
Schwabachanlage 6
91054 Erlangen
Germany
Phone: ++ 49/91 31/8 54 48 24
Fax: ++ 49/91 31/8 53 61 79
Email: tobias.engelhorn@uk-erlangen.de