Planta Med 2009; 75(4): 340-345
DOI: 10.1055/s-0028-1112212
Natural Products Chemistry
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Phenylpropanoid and Lignan Derivatives from Antiaris toxicaria and their Effects on Proliferation and Differentiation of an Osteoblast-Like Cell Line

Miao-Miao Jiang1 , Hao Gao2 , Yi Dai2 , Xue Zhang3 , Nai-Li Wang3 , Xin-sheng Yao2 , 3
  • 1Central Laboratory of Guangdong Pharmaceutical University, Guangzhou, P. R. China
  • 2Institutes of Traditional Chinese Medicine and Natural Product, Jinan University, Guangzhou, P. R. China
  • 3College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, P. R. China
Further Information

Publication History

Received: January 25, 2008 Revised: October 28, 2008

Accepted: November 4, 2008

Publication Date:
30 January 2009 (online)

Abstract

Antiarisin A and B (1 and 2), together with seventeen known compounds (3 – 19), were isolated from the EtOAc extract of the stem of Antiaris toxicaria Lesch. Their structures were determined on the basis of spectroscopic analyses and chemical methods. Most of the compounds were reported for the first time from the Antiaris genus and firstly studied for their proliferative and differentiative activity on osteoblast-like cells. Screening results indicated that, at the concentration of 10 – 8 M, benzofuran lignans 5, 6, 11 and 13 could significantly stimulate the proliferation of UMR106 cells, while 8, 9, 11, 14, 15 and 17 could enhance ALP (alkaline phosphatase) activity.

References

  • 1 Basly J P, Lavier M C. Dietary phytoestrogens: Potential selective estrogen enzyme modulators?.  Planta Med. 2005;  71 287-94
  • 2 Dixon R A. Phytoestrogens.  Annu Rev Plant Biol. 2004;  55 225-61
  • 3 Kim M K, Chung B C, Yu V Y, Nam J H, Lee H C, Huh K B. et al . Relationships of urinary phyto-oestrogen excretion to BMD in postmenopausal women.  Clin Endocrinol. 2002;  56 321-8
  • 4 Morabito N, Crisafulli A, Vergara C, Gaudio A, Lasco A, Frisina N. Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: A randomized double-blind placebo-controlled study.  J Bone Miner Res. 2002;  17 1904-12
  • 5 Jeong J C, Lee J W, Yoon C H, Lee Y C, Chung K H, Kim M G. Stimulative effects of Drynariae Rhizoma extracts on the proliferation and differentiation of osteoblastic MC3T3-E1 Cells.  J Ethnopharmacol. 2005;  96 489-95
  • 6 Cos P, De Bruyne T, Apers S, Vanden Berghe D, Pieters L, Vlietinck A J. Phytoestrogens: Recent developments.  Planta Med. 2003;  69 589-99
  • 7 Kiyoshi Y, Norio S, Yutak S, Yoshihiro M. Flavanone xyloside and lignans from Prunus jamasakura bark.  Phytochemistry. 1990;  29 1675-8
  • 8 Zou Y F, Lobera M, Snider B B. Synthesis of 2,3-dihydro-3-hydroxy-2-hydroxylalkylbenzofurans from epoxy aldehydes. One-step syntheses of brosimacutin G, vaginidiol, vaginol, smyrindiol, xanthoarnol, and avicenol A. Biomimetic syntheses of angelicin and psoralen.  J Org Chem. 2005;  70 1761-70
  • 9 Lai A, Monduzzi M, Saba G. Carbon-13 NMR studies on catechol, phenol and benzene derivatives of biological relevance.  Magn Reson Chem. 1985;  23 379-83
  • 10 Li Y C, Kuo Y H. Four new compounds, ficusal, ficusesquilignan A, B, and ficusolide diacetate from the heartwood of Ficus microcarpa.  Chem Pharm Bull. 2000;  48 1862-5
  • 11 Warashina T, Nagatani Y, Noro T. Further constituents from the bark of Tabebuia impetiginosa. .  Phytochemistry. 2005;  66 589-97
  • 12 Wu T S, Yeh J H, Wu P L. The heartwood constituents of Tetradium glabrifolium. .  Phytochemistry. 1995;  40 121-4
  • 13 Xie L H, Akao T, Hamasaki K, Deyama T, Hattori M. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol.  Chem Pharm Bull. 2003;  51 508-15
  • 14 Wang A X, Zhang Q, Jia Z J. Phenylpropanosides, lignans and other constituents from Cremanthodium ellisii. .  Pharmazie. 2004;  59 889-92
  • 15 Lin R C, Skaltsounis A L, Seguin E, Tillequin F, Koch M. Phenolic constituents of Selaginella doederleinii. .  Planta Med. 1994;  60 168-70
  • 16 Hashimoto Y, Ozawa S, Sasaya T. Extractives of Chosenia arbutifolia A. Skvortz. II. New neolignans from the wood of Chosenia arbutifolia. .  Mokuzai Gakkaishi. 1994;  40 549-53
  • 17 Kinjo J, Higuchi H, Fukui K, Nohara T. Lignoids from Albizziae Cortex.II A biodegradation pathway of syringaresinol.  Chem Pharm Bull. 1991;  39 2952-5
  • 18 Laik S, Geoffreyd B. Coniferaldehyde derivatives from tissue culture of Artemisia annua and Tanacetum parthenium.  Phytochemistry. 1999;  50 781-5
  • 19 Yoshikawa K, Mimura N, Arihara S. Isolation and absolute structures of enantiomeric 1,2-bis(4-hydroxy-3-methoxyphenyl)-1,3-propanediol 1-O-glucosides from the bark of Hovenia trichocarpa. .  J Nat Prod. 1998;  61 1137-9
  • 20 Rupert K, Gerhard S. Gas chromatography/mass spectrometry of trimethylsilylated phenolic glucosides from roots of Urtica dioica.  Biol Mass Spectrom. 1991;  20 53-60
  • 21 Shiming L, Knutl L, Adrian F A. Revised structure for a neolignan from Brucea javanica.  Phytochemistry. 1998;  49 2125-8
  • 22 Kazuko Y, Hiroshi K, Shigenobu A. Phenolic glucosides and lignans from Ehretia ovalifolia. .  Phytochemistry. 1995;  39 659-64
  • 23 Wang C Z, Jia Z J. Lignan, phenylpropanoid and iridoid glycosides from Pedicularis torta. .  Phytochemistry. 1997;  45 159-66

Prof. Xin-Sheng Yao

Institute of Traditional Chinese Medicine & Natural Products

Jinan University

Guangzhou 510632

People's Republic of China

Phone: +86-20-8522-5849

Fax: +86-20-8522-1559

Email: yaoxinsheng@vip.tom.com

Dr. Xue Zhang

College of Traditional Chinese Medicine

Shenyang Pharmaceutical University

Shenyang 110016

People's Republic of China

Email: zxalice@sohu.com