Laryngorhinootologie 2009; 88: S76-S94
DOI: 10.1055/s-0028-1119566
Technik für Lebensqualität – Biomaterialien und Implantate in der Hals-Nasen-Ohrenheilkunde

© Georg Thieme Verlag KG Stuttgart · New York

Polymere Implantatmaterialen zur trachealen und pharyngealen Schleimhautrekonstruktion in der Kopf-Hals-Chirurgie

Der lange Weg „from bench to bed”Polymeric Implant Materials for the Reconstruction of Tracheal and Pharyngeal Mucosal Defects in Head and Neck SurgeryThe Long Way from Bench to BedsideD.  Rickert1
  • 1Universitätsklinik für Hals-Nasen-Ohrenheilkunde, Ulm (Direktor: Prof. Dr. med. G. Rettinger), Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Marienhospital Stuttgart(Direktor: Prof. Dr. med. Dr. med. dent. H. Steinhart)
Further Information

Publication History

Publication Date:
07 April 2009 (online)

Zusammenfassung

Es werden therapeutische Ansätze zur Rekonstruktion von Trachea und Pharynx mit Implantatmaterialien beschrieben. Trotz vielfältiger methodischer Ansätze mit unterschiedlichsten Materialien zur Trachealrekonstruktion hat es bisher keine Methode zur erfolgreichen klinischen Anwendung gebracht. Zu den wesentlichen Problemen gehörten u. a. Nahtinsuffizienzen, Stenosen, fehlende mukoziliäre Clearance und Vaskularisation. Erst die Entwicklung des Tissue Engineerings führte zu neuen Impulsen und neuartigen therapeutischen Optionen auch in der rekonstruktiven Trachealchirurgie. In der Pharynxrekonstruktion sind derzeit noch keine weiterreichenden Ansätze erkennbar, aus denen klinische Anwendung und Erfolg abschätzbar wären. In eigenen Arbeiten wurde ein neues polymeres Implantatmaterial bestehend aus Multiblock-Copolymeren verwendet, das aufgrund seiner physikochemischen Eigenschaften zur Rekonstruktion des oberen Aerodigestivtraktes (ADT) erfolgreich erschien. Um das Material für den Einsatz im ADT unter extremen chemischen, enzymatischen, bakteriellen und mechanischen Bedingungen zu testen, wurde es zur Rekonstruktion eines durchgreifenden Magenwanddefektes im Tiermodell (n = 42) eingesetzt. Gastrointestinale Komplikationen sowie negative systemische Auswirkungen traten bei keinem Versuchstier auf, und es kam zur mehrschichtigen Regeneration der Magenwand u. a. mit Aufbau einer regelrechten Mukosa. Durch die Stammzelltechnologie werden in Zukunft weitere Fortschritte in der Rekonstruktion von Geweben nach Prinzipien des Tissue Engineerings auch in der Kopf-Hals-Chirurgie erwartet.

Abstract

The existing therapeutical options for the tracheal and pharyngeal reconstruction by use of implant materials are described. Inspite of a multitude of options and the availability of very different materials none of these methods applied for tracheal reconstruction were successfully introduced into the clinical routine. Essential problems are insufficiencies of anastomoses, stenoses, lack of mucociliary clearance and vascularisation. The advances in Tissue Engineering (TE) offer new therapeutical options also in the field of the reconstructive surgery of the trachea. In pharyngeal reconstruction far reaching developments cannot be recognized at the moment which would allow to give a prognosis of their success in clinical application. A new polymeric implant material consisting of multiblock copolymers was applied in our own work which was regarded as a promising material for the reconstruction of the upper aerodigestive tract (ADT) due to its physicochemical characteristics. In order to test this material for applications in the ADT under extreme chemical, enzymatical, bacterial and mechanical conditions we applied it for the reconstruction of a complete defect of the gastric wall in an animal model. In none of the animals tested either gastrointestinal complications or negative systemic events occurred, however, there was a multilayered regeneration of the gastric wall implying a regular structured mucosa.

In future the advanced stem cell technology will allow further progress in the reconstruction of different kind of tissues also in the field of head and neck surgery following the principles of Tissue Engineering.

Literatur

  • 1 Szilagyi D E, France L C, Smith R F, Whitcomb J G. The clinical use of an elastic dacron prosthesis.  AMA Arch Surg. 1958;  77 538-551
  • 2 Kohane D S, Langer R. Polymeric biomaterials in tissue engineering.  Pediatr Res. 2008;  63 487-491
  • 3 Mason C, Dunnill P. Lessons for the nascent regenerative medicine industry from the biotech sector.  Regen Med. 2007;  2 753-756
  • 4 Mason C, Dunnill P. A brief definition of regenerative medicine.  Regen Med. 2008;  3 1-5
  • 5 Emmrich F, Lendlein A. Perspektiven für die Regenerative Medizin in Deutschland, Langfassung. In: Emmrich F, Lendlein A (eds) Arbeitskreis Regenerative Medizin. 2004: 1-82
  • 6 Breymann C, Schmidt D, Hoerstrup S P. Umbilical cord cells as a source of cardiovascular tissue engineering.  Stem Cell Rev. 2006;  2 87-92
  • 7 Reed J A, Patarca R. Regenerative dental medicine: stem cells and tissue engineering in dentistry.  J Environ Pathol Toxicol Oncol. 2006;  25 537-569
  • 8 Ioannidou E. Therapeutic modulation of growth factors and cytokines in regenerative medicine.  Curr Pharm Des. 2006;  12 2397-2408
  • 9 Fine G C, Liao R, Sohn R L. Cell therapy for cardiac repair.  Panminverva Med. 2008;  50 129-137
  • 10 Kume S. Stem-cell-based approaches for regenerative medicine.  Dev Growth Differ. 2005;  47 393-402
  • 11 Spector M. Biomaterials-based tissue engineering and regenerative medicine solutions to musculoskeletal problems.  Swiss Med Wkly. 2006;  136 293-301
  • 12 Bajada S, Mazakova I, Richardson J B, Ashammakhi N. Updates on stem cells and their applications in regenerative medicine.  J Tissue Eng Regen Med. 2008;  2 169-183
  • 13 Slater B J, Kwan M D, Gupta D M, Panetta N J, Longaker M T. Mesenchymal cells for skeletal tissue engineering.  Expert Opin Biol Ther. 2008;  8 885-893
  • 14 Schulz R M, Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes.  Eur Biophys J. 2007;  36 539-568
  • 15 Breymann C, Schmidt D, Hoerstrup S P. Umbilical cord cells as a source of cardiovascular tissue engineering.  Stem Cell Rev. 2006;  2 87-92
  • 16 Feki A, Faltin D L, Lei T, Dubuisson J B, Jacob S, Irion O. Sphincter incontinence: Is regenerative medicine the best alternative to restore urinary or anal sphincter function?.  Int J Biochem Cell Biol. 2007;  39 678-684
  • 17 Reed J A, Patarca R. Regenerative dental medicine: stem cells and tissue engineering in dentistry.  J Environ Pathol Toxicol Oncol. 2006;  25 537-569
  • 18 Ott H C, Taylor D A. From cardiac repair to cardiac regeneration – ready to translate?.  Expert Opin Biol Ther. 2006;  6 867-878
  • 19 Richter-Kuhlmann E. Regenerative Medizin.  Deutsches Ärzteblatt. 2007;  46 3154-3156
  • 20 Mason C. Regenerative medicine. The industry comes of age.  Med Device Technol. 2007;  18 25-30
  • 21 Mason C, Dunnill P. The strong financial case for regenerative medicine and the regen industry.  Regen Med. 2008;  3 351-363
  • 22 Schuh J C. Medical device regulations and testing for toxicologic pathologists.  Toxicol Pathol. 2008;  36 63-69
  • 23 Jayo M J, Watson D D, Wagner B J, Bertram T A. Tissue engineering and regenerative medicine: role of toxicologic pathologists for an emerging medical technology.  Toxicol Pathol. 2008;  36 92-96
  • 24 Pfühler W, Middel C D, Hübner M. Stoffrecht.  . 2008;  1 12-18
  • 25 Siegmund-Schultze N. Gewebegesetz. Mehr Bürokratie und zu wenig Information.  Deutsches Ärzteblatt. 2008;  105 828-830
  • 26 Gall K, Yakacki C M, Liu Y, Shandas R, Willett N, Anseth K S. Thermomechanics of the shape memory effect in polymers for biomedical applications.  J Biomed Mater Res A. 2005;  73 339-348
  • 27 Langer R, Tirrell D A. Designing materials for biology and medicine.  Nature. 2004;  428 487-492
  • 28 Lendlein A, Kelch S. Degradable, Multifunctional Biomaterials with Shape-memory.  Materials Science Forum. 2005;  492 219-223
  • 29 Lendlein A, Kratz K, Kelch S. Smart implant materials.  Med Device Technol. 2005;  16 12-14
  • 30 Lendlein A, Schmidt A M, Langer R. AB-polymer networks based on oligo(epsilon-caprolactone) segments showing shape-memory properties.  Proc Natl Acad Sci. 2001;  18 842-847
  • 31 Sawney A S, Pathak C P, Hubbell J A. Bioerodible Hydrogels Based on Photopolymerized Poly(ethylene glycol)-co-poly(alpha-hydroxy acid) Diacrylate Macromers.  Macromolecules. 1993;  26 581-587
  • 32 Burkoth A K, Anseth K S. MALDI-TOF Characterization of Highly Cross-Linked, Degradable Polymer Networks.  Macromolecules. 1999;  32 1438-1444
  • 33 Thevenot P, Hu W, Tang L. Surface chemistry influences implant biocompatibility.  Curr Top Med Chem. 2008;  8 270-280
  • 34 Rickert D, Lendlein A, Schmidt A M, Kelch S, Roehlke W, Fuhrman R, Franke R P. In vitro cytotoxicity testing of AB-polymer networks based on oligo(epsilon-caprolactone) segments after different sterilization techniques.  J Biomed Mater Res B. 2003;  67 722-731
  • 35 Barron D, Collins M N, Flannery M J, Leahy J J, Birkinshaw C. Crystal ageing in irradiated ultra high molecular weight polyethylene.  J Mater Sci Mater Med. 2008;  19 2293-2299
  • 36 Yakacki C M, Lyons M B, Rech B, Gall K, Shandas R. Cytotoxicity and thermomechanical behavior of biomedical shape-memory polymer networks post-sterilization.  Biomed Mater. 2008;  3 15 010. Epub ahead of print
  • 37 An Y H, Alvi F I, Kang Q, Laberge M, Drews M J, Zhang J, Matthews M A, Arciola C R. Effects of sterilization on implant mechanical property and biocompatibility.  Int J Artif Organs. 2005;  28 1126-1137
  • 38 Cavalot A L, Gervasio C F, Nazionale G, Albera R, Bussi M, Staffieri A, Ferrero V, Cortesina G. Pharyngocutaneous fistula as a complication of total laryngectomy: review of the literature and analysis of case records.  Otolaryngol Head Neck Surg. 2000;  123 587-592
  • 39 Makitie A A, Irish J, Gullane P J. Pharyngocutaneous fistula.  Curr Opin Otolaryngol Head Neck Surg. 2003;  11 78-84
  • 40 Fung K, Teknos T N, Vandenberg C D, Lyden T H, Bradford C R, Hogikyan N D, Kim J, Prince M E, Wolf G T, Chepeha D B. Prevention of wound complications following salvage laryngectomy using free vascularized tissue.  Head Neck. 2007;  29 425-430
  • 41 Richter G T, Ryckman F, Brown R L, Rutter M J. Endoscopic management of recurrent tracheoesophageal fistula.  J Pediatr Surg. 2008;  43 238-245
  • 42 Bachor E, Neun O, Bogeschdorfer F, Gruen P M. Reimbursement of patients with high costs in a department of otorhinolaryngology of maximum care and refinancing by the German DRG system.  Laryngo-Rhino-Otologie. 2005;  84 594-601
  • 43 Franz D, Franz K, Roeder N, Hörmann K, Fischer R J, Alberty J. Case allocation of extensive operations on head and neck within the German DRG system 2004 – 2007: what is the net result of the continued developments in case allocation?.  HNO. 2007;  55 538-545
  • 44 Daniel R A. The regeneration of defects of the trachea and bronchi: an experimental study.  J Thorac Surg. 1948;  17 335-349
  • 45 Daniel R A, Taliaferro R M, Schaffarzick W R. Experimental Studies on the Repair of Wounds and Defects of the Trachea and Bronchi.  Chest. 1950;  17 426-441
  • 46 Longmire W P. Tracheal wounds and injuries, repair of large defects.  Ann Otol Rhinol Laryngol. 1948;  57 875-883
  • 47 Ferguson D J, Wild J J, Wangensteen O H. Experimental resection of the trachea.  Surgery. 1950;  28 597-619
  • 48 Bucher R M, Burnett E, Rosenmond G P. Experimental reconstruction of the trachea and bronchial defects with stainless steel wire mesh.  J Thorac Surg. 1951;  21 572-583
  • 49 Craig R L, Holmes G W, Shabart E J. Resection and replacement with prothesis.  J Thorac Surg. 1953;  25 384-396
  • 50 Holle F. Healing conditions of tracheobronchial tree and its plastic reconstruction. Experimental study.  Arch Klin Chir. 1953;  277 1-35
  • 51 Ekestrom S. Experimental reconstruction of intrathoracic trachea.  Acta Chir Scand. 1956;  110 367-372
  • 52 Rush B, Cliffton E. Experimental reconstruction of the trachea with bladder mucosa.  Surgery. 1956;  40 1105-1110
  • 53 Bell J W. Experimental repair of tracheal defects with gallbladder mucosa.  Chest. 1960;  38 140-147
  • 54 Beal A C, Harrington O B, Greenberg S D, Morris G C, Usher F C. Tracheal replacement with heavy Marlex mesh.  Arch Surg. 1962;  87 390-396
  • 55 Graziano J L, Spinazzola A, Neville W E. Prosthetic replacement of the tracheal carina.  Ann Thorac Surg. 1967;  4 1-11
  • 56 Greenberg S d, Wilms R K. Tracheal prostheses: An experimental study in dogs.  Arch Otolaryngol. 1962;  75 335-341
  • 57 Poticha S M, Lewis F J. Experimental replacment of the trachea.  J Thorac Cardiovasc Surg. 1966;  52 61-67
  • 58 Wenig B L, Reuter V C, Steinberg B M, Strong E W. Tracheal reconstruction: in vitro und in vivo animal pilot study.  Laryngoscope. 1987;  97 959-965
  • 59 Schauwecker H H, Gerlach H, Planck H, Bücherl E S. Isoelastic polyurethane prothesis for segmental trachea replacement in beagle dogs.  Artif Organs. 1989;  13 216-218
  • 60 Langer R, Vacanti J P. Tissue engineering.  Science. 1993;  260 920-926
  • 61 Grillo H C. Tracheal replacement: a critical review.  Ann Thorac Surg. 2002;  73 1995-2004
  • 62 Vacanti C A, Paige K T, Kim W S, Sakata J, Upton J, Vacanti J P. Experimental tracheal replacement using tissue engineered cartilage.  J Pediatr Surg. 1994;  29 201-205
  • 63 Sakata J, Vacanti C A, Schloo B, Healy G B, Langer R, Vacanti J P. Tracheal composites tissue engineered from chondrocytes, tracheal epithelial cells and synthetic degradable scaffolding.  Transplant Proc. 1994;  26 3309-3310
  • 64 Kojima K, Bonassar L J, Roy A K, Vacanti C A, Cortiella J. Autologous tissue-engineered trachea with sheep nasal chondrozytes.  J Thorac Cardiovasc Surg. 2002;  123 1177-1184
  • 65 Fonkalsrud E W, Sumida S. Tracheal replacement with autologous esophagus for tracheal stricture.  Arch Surg. 1971;  102 139-142
  • 66 Sabas A A, Uez J B, Rojas O, Inones A, Aranguren J A. Replacement of the trachea with dura mater. Experimental work.  J Thorac Cardiovasc Surg. 1977;  74 761-765
  • 67 Kon M, van den Hooff A. Cartilage tube formation by perichondrium: a new concept for tracheal reconstruction.  Plast Reconstr Surg. 1983;  72 791-797
  • 68 Cohen R C, Filler R M, Konuma K, Bahoric A, Kent G, Smith C. The successful reconstruction of thoracic tracheal defects with free periostal grafts.  J Pediatr Surg. 1985;  20 852-858
  • 69 Har-El G, Krespi Y P, Goldsher M. The combined use of muscle flaps and alloplasts for tracheal reconstruction.  Arch Otolaryngol Head Neck Surg. 1989;  115 1310-1313
  • 70 Lochbihler H, Hoelzl J, Dietz H G. Tissue compatibility and biodegradation of new absorbable stents for tracheal stabilization: an experimental study.  J Pediatr Surg. 1997;  32 717-720
  • 71 Korpela A, Aarnio P, Sariola H, Törmälä P, Harjula A. Comparision of tissue reactions in the tracheal mucosa surrounding a bioabsorbable and silicone airway stents.  Ann Thorac Surg. 1998;  66 1772-1776
  • 72 Korpela A, Aarnio P, Sariola H, Törmälä P, Harjula A. Bioabsorbable self-inforced poly-L-lactide, metallic and silicone stents in the management of experimental tracheal stenosis.  Chest. 1999;  115 490-495
  • 73 Robey T C, Välimaa M S, Murphy H S, Törmälä P, Mooney D J, Weatherly R A. Use of internal bioabsorbable PLGA “finge-type” stents in a rabbit tracheal reconstruction model.  Arch Otolaryngol Head Neck Surg. 2000;  126 985-991
  • 74 Cotton R T, Seid A B. Management of the extubation problem in the premature child: anterior cricoid split as an alternative to tracheotomy.  Ann Otol Rhinol Laryngol. 1980;  89 508-511
  • 75 Zalzal G H, Deutch E. External fixation using microplates after laryngotracheal expansion surgery.  Arch Otolarygnol Head Neck Surg. 1991;  117 155-159
  • 76 Weisberger E C, Nguyen C T. Laryngotracheal reconstruction using a Vitallium alloy miniplate.  Ann Otol Rhinol Laryngol. 1996;  105 363-366
  • 77 Willner A, Modlin S. Extraluminal laryngotracheal fixation with absorbable miniplates.  Arch Otolaryngol Head Neck Surg. 1995;  121 1356-1360
  • 78 Pietrzak W S, Sarver D R, Verstynen B S. Bioabsorbable polymer science for the practicing surgeon.  J Craniofac Surg. 1997;  107 87-91
  • 79 Eppley B L, Reilly M. Degradation characteristics of PLLA-PGA bone fixation devices.  J Craniofac surg. 1997;  8 116-120
  • 80 Long C M, Conlex S F, Kajdacsy-Balla A, Kerschner J E. Laryngotracheal reconstruction in canines. Fixation of autologous costochondral grafts using polylactic and polyglycolic acid miniplates.  Arch Otolaryngol Head Neck Surg. 2001;  127 570-575
  • 81 Kojima K, Bonassar L J, Roy A K, Mizuno H, Cortiella J, Vacanti C A. A composite tissue-engineered trachea using sheep nasal chondrocyte and epithel cells.  FASEB J. 2003;  17 823-828
  • 82 Kamil S H, Eavey R D, Vacanti M P, Vacanti C A, Hartnick C J. Tissue-engineered cartilage as af graft source for laryngotracheal reconstruction.  Arch Otolaryngol Head Neck Surg. 2004;  130 1048-1051
  • 83 George M, Lang F, Pasche P, Monnier P. Surgical management of laryngotracheal stenosis in adults.  Eur Arch Otorhinolaryngol. 2005;  262 609-615
  • 84 Herrington H C, Weber S M, Andersen P E. Modern management of laryngotracheal stenosis.  Laryngoscope. 2006;  116 1553-1557
  • 85 Jaqueet Y, Pilloud R, Lang F JW, Monnier P. Prefabrication of composite grafts for long-segment tracheal reconstruction.  Arch Otolaryngol Head Neck Surg. 2004;  130 1185-1190
  • 86 Jaillard S, Holder-Espinasse M, Hubert T, Copin M C, Duterque-Coquillaud M, Wurtz A, Marquette C H. Tracheal replacement by allogenic aorta in the pig.  Chest. 2006;  130 1397-1404
  • 87 Martinod E, Seguin A, Holder-Espinasse M. Tracheal regeneration following tracheal replacement with an allogenic aorta.  Ann Thorac Surg. 2005;  79 942-949
  • 88 Martinod E, Seguin A, Pfeuty K, Fornes P, Kambouchner M, Azorin J F, Carpentier A F. Long-term evaluation of the replacement of the trachea with an autologous aortic graft.  Ann Thorac Surg. 2003;  75 1572-1578
  • 89 Azorin J G, Bertin F, Martinod E. Tracheal replacement with an aortic autograft.  Eur J Card Thorac Surg. 2006;  29 261-263
  • 90 Macchiarini P, Jungebluth P, Go T, Asnaghi M A, Rees L E, Cogan T A, Dodson A, Martorell J, Bellini S, Parnigotto P P, Dickinson S C, Hollander A P, Mantero S, Conconi M T, Birchall M A. Clinical transplantation of a tissue-engineered airway.  Lancet. 2008;  372 2023-2030
  • 91 Ernst A, Ashiku S. Tracheal transplantation: are we any closer to the holy grail of airway management?.  Chest. 2006;  130 1299-1300
  • 92 Omori K, Nakamura T, Kanemaru S, Asato R, Yamashita M, Tanaka S, Magrufov A, Ito J, Shimizu Y. Regenerative medicine of the trachea: the first human case.  Ann Otol Rhinol Laryngol. 2005;  114 429-433
  • 93 Yamashita M, Kanemaru S I, Hirano S, Magrufov A, Tamaki H, Tamura Y, Kishimoto M, Omori K, Nakamura T, Ito J. Tracheal regeneration after partial resection: a tissue engineering approach.  Laryngoscope. 2007;  117 497-502
  • 94 Mall M A. Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models.  J Aerosol Med Pulm Drug Deliv. 2008;  21 13-24
  • 95 Biesalski H K, Nohr D. Importance of vitamin-A for lung function and development.  Mol Aspects Med. 2003;  24 431-440
  • 96 Evans M J, van Winkle L S, Fanucchi M V, Plopper C G. Cellular and molecular characteristics of basal cells in airway epithelium.  Exp Lung Res. 2001;  27 401-415
  • 97 Hajj R, Baranek T, Le Naour R, Lesimple P, Puchelle E, Coraux C. Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties.  Stem Cells. 2007;  25 139-148
  • 98 Ziegelaar B W, Aigner J, Staudenmaier R, Lempart K, Mack B, Happ T, Sittinger M, Endres M, Naumann A, Kastenbauer E, Rotter N. The characterisation of human respiratory epithelial cells cultured on resorbable scaffolds: first steps towards a tissue engineered tracheal replacement.  Biomaterials. 2002;  23 1425-1438
  • 99 Hicks jr W, Hall 3rd L, Sigurdson L, Stewart C, Hard R, Winston J, Lwebuga-Mukasa J. Isolation and characterization of basal cells from human upper respiratory epithelium.  Exp Cell Res. 1997;  237 357-363
  • 100 Mercer R R, Russell M L, Roggli V L, Crapo J D. Cell number and distribution in human and rat airways.  Am J Respir Cell Mol Biol. 1994;  10 613-624
  • 101 Yokoyama T. Motor or sensor: a new aspect of primary cilia function.  Anat Sci Int. 2004;  79 47-54
  • 102 Davis C W, Dickey B F. Regulated airway goblet cell mucin secretion.  Annu Rev Physiol. 2008;  70 487-512
  • 103 Hong K U, Reynolds S D, Watkins S, Fuchs E, Stripp B R. In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations.  Am J Physiol Lung Cell Mol Physiol. 2004;  286 643-649
  • 104 Nomoto Y, Suzuki T, Yasuhiro T, Kobayashi K, Miyake M, Hazama A, Wada I, Kanemaru S, Nakamura T, Omori K. Tissue engineering for regeneration of the tracheal epithelium.  Ann Otol Rhinol Laryngol. 2006;  115 501-506
  • 105 Tada Y, Suzuki T, Takezawa T, Nomoto Y, Kobayashi K, Nakamura T, Omori K. Regeneration of tracheal epithelium utilizing a novel bipotential collagen scaffold.  Ann Otol Rhinol Laryngol. 2008;  117 359-365
  • 106 Araki M, Takano T, Uemonsa T, Nakane Y, Tsudzuki M, Kaneko T. Epithelia-mesenchyme interaction plays an essential role in transdifferentiation of retinal pigment epithelium of silver mutant quail: localization of FGF and related molecules and aberrant migration pattern of neural crest cells during eye rudiment formation.  Dev Biol. 2002;  244 358-371
  • 107 El Ghalbzouri A, Ponec M. Diffusible factors released by fibroblasts support epidermal morphogenesis and deposition of basement membrane components.  Wound Repair Regen. 2004;  12 359-367
  • 108 Xia W, Phan T T, Lim I J, Longaker M T, Yang G P. Complex epithelial-mesenchymal interactions modulate transforming growth factor-beta expression in keloid-derived cells.  Wound Repair Regen. 2004;  12 546-556
  • 109 Harrison C A, Dalley A J, Mac Neil S. A simple in vitro model for investigating epithelial/mesenchymal interactions: keratinocyte inhibition of fibroblast proliferation and fibronectin synthesis.  Wound Repair Regen. 2005;  13 543-550
  • 110 Imaizumi F, Asahina I, Moriyama T, Ishii M, Omura K. Cultured mucosal cell sheet with a double layer of keratinocytes and fibroblasts on a collagen membrane.  Tissue Eng. 2004;  10 657-664
  • 111 Cedidi C C, Wilkens L, Berger A, Ingianni G. Influence of human fibroblasts on development and quality of multilayered composite grafts in athymic nude mice.  Eur J Med Res. 2007;  12 541-555
  • 112 Nishimura T, Toda S, Mitsumoto T, Oono S, Sugihara H. Effects of hepatocyte growth factor, transforming growth factor-beta1 and epidermal growth factor on bovine corneal epithelial cells under epithelial-keratocyte interaction in reconstruction culture.  Exp Eye Res. 1998;  66 105-116
  • 113 Wilson S E, Chen L, Mohan R R, Liang Q, Liu J. Expression of HGF, KGF, EGF and receptor messenger RNAs following corneal epithelial wounding.  Exp Eye Res. 1999;  68 377-397
  • 114 Costea D E, Loro L L, Dimba E A, Vintermyr O K, Johannessen A C. Crucial effects of fibroblasts and keratinocyte growth factor on morphogenesis of reconstituted human oral epithelium.  J Invest Dermatol. 2003;  121 1479-1486
  • 115 Daniels J T, Khaw P T. Temporal stimulation of corneal fibroblast wound healing activity by differentiating epithelium in vitro.  Invest Opthalmol Vis Sci. 2000;  41 3754-3762
  • 116 Kobayashi K, Nomoto Y, Suzuki T, Tada Y, Miyake M, Hazama A, Kanemaru S, Nakamura T, Omori K. Effect of fibroblasts on tracheal epithelial regeneration in vitro.  Tissue Eng. 2006;  12 2619-2628
  • 117 Kobayashi K, Suzuki T, Nomoto Y, Tada Y, Miyake M, Hazama A, Nakamura T, Omori K. Potential of heterotopic fibroblasts as autologous transplanted cells for tracheal epithelial regeneration.  Tissue Eng. 2007;  13 2175-2184
  • 118 Nomoto Y, Kobayashi K, Tada Y, Wada I, Nakamura T, Omori K. Effect of fibroblasts on epithelial regeneration on the surface of a bioengineered trachea.  Ann Otol Rhinol Laryngol. 2008;  117 59-64
  • 119 Le Visage C, Dunham B, Flint P, Leong K W. Coculture of mesenchymal stem cells and respiratory epithelial cells to engineer a human composite respiratory mucosa.  Tissue Eng. 2004;  10 1426-1435
  • 120 Letang E, Sánchez-Lloret J, Gimferrer J M, Ramírez J, Vicens A. Experimental reconstruction of the canine trachea with a free revascularized small bowel graft.  Ann Thorac Surg. 1990;  49 955-958
  • 121 Costantino P D, Nuss D W, Snyderman C H, Johnson J T, Friedman C D, Narayanan K, Houston G. Experimental tracheal replacement using a revascularized jejunal autograft with an implantable Dacron mesh tube.  Ann Otol Rhinol Laryngol. 1992;  101 807-814
  • 122 Grillo H C. The history of tracheal surgery.  Chest Surg Clin N Am. 2003;  13 175-189
  • 123 Fisher R J, Peattie R A. Controlling tissue microenvironments: biomimetics, transport phenomena, and reacting systems.  Adv Biochem Eng Biotechnol. 2007;  103 1-73
  • 124 Tan Q, Steiner R, Hoerstrup S P, Weder W. Tissue-engineered trachea: History, problems and the future.  Eur J Cardiothorac Surg. 2006;  30 782-786
  • 125 Tan Q, Steiner R, Yang L, Welti M, Neuenschwander P, Hillinger S, Weder W. Accelerated angiogenesis by continuous medium flow with vascular endothelial growth factor inside tissue-engineered trachea.  Eur J Cardiothorac Surg. 2007;  31 806-811
  • 126 Hallén L, Dahlqvist A. Cross-linked hyaluronan for augmentation of the posterior pharyngeal wall: an experimental study in rats.  Scand J Plast Reconstr Surg Hand Surg. 2002;  36 197-201
  • 127 Ophof R, Maltha J C, Kuijpers-Jagtman A M, Von den Hoff J W. Implantation of tissue-engineered mucosal substitutes in the dog palate.  Eur J Orthod. 2008;  30 1-9
  • 128 Moharamzadeh K, Brook I M, Van Noort R, Scutt A M, Thornhill M H. Tissue-engineered oral mucosa: a review of the scientific literature.  J Dent Res. 2007;  86 115-124
  • 129 Lendlein A, Langer R. Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications.  Science. 2002;  296 1673-1676
  • 130 Falconnet D, Csucs G, Grandin H M, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays.  Biomaterials. 2006;  27 3044-3063
  • 131 Rickert D, Franke R P, Fernández C A, Kilroy S, Yan L, Moses M A. Establishment and biochemical characterization of primary cells of the upper aerodigestive tract.  Clin Hemorheol Microcirc. 2007;  36 47-64
  • 132 Rickert D, Lendlein A, Kelch S, Moses M A, Franke R P. Expression of MMPs and TIMPs in primary epithelial cell cultures of the upper aerodigestive tract seeded on the surface of a novel polymeric biomaterial.  Clin Hemorheol Microcirc. 2005;  32 117-128
  • 133 Clark R AF. The Molecular and Cellular Biology of Wound Repair, 2nd ed. New York; Plenum Press 1995: 3-50
  • 134 Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing.  Clin Dermatol. 2007;  25 9-18
  • 135 Ravanti L, Kähäri V M. Matrix metalloproteinases in wound repair (review).  Int J Mol Med. 2000;  6 391-407
  • 136 Xue M, Le N T, Jackson C J. Targeting matrix metalloproteases to improve cutaneous wound healing.  Expert Opin Ther Targets. 2006;  10 143-155
  • 137 Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs.  Cardiovasc Res. 2006;  69 562-573
  • 138 Moses M A, Marikovsky M, Harper J W, Vogt P, Eriksson E, Klagsbrun M, Langer R. Temporal study of the activity of matrix metalloproteinases and their endogenous inhibitors during wound healing.  J Cell Biochem. 1996;  60 379-386
  • 139 Soo C, Shaw W W, Zhang X, Longaker M T, Howard E W, Ting K. Differential expression of matrix metalloproteinases and their tissue-derived inhibitors in cutaneous wound repair.  Plast Reconstr Surg. 2000;  105 638-647
  • 140 Bennett J H, Morgan M J, Whawell S A, Atkin P, Roblin P, Furness J, Speight P M. Metalloproteinase expression in normal and malignant oral keratinocytes: stimulation of MMP-2 and -9 by scatter factor.  Eur J Oral Sci. 2000;  108 281-291
  • 141 Stephens P, Davies K J, Occleston N, Pleass R D, Kon C, Daniels J, Khaw P T, Thomas D W. Skin and oral fibroblasts exhibit phenotypic differences in extracellular matrix reorganization and matrix metalloproteinase activity.  Br J Dermatol. 2001;  144 229-237
  • 142 Miyazaki Y, Hara A, Kato K, Oyama T, Yamada Y, Mori H, Shibata T. The effect of hypoxic microenvironment on matrix metalloproteinase expression in xenografts of human oral squamous cell carcinoma.  Int J Oncol. 2008;  32 145-151
  • 143 Cyster L A, Parker K G, Parker T L, Grant D M. The effect of surface chemistry and nanotopography of titanium nitride (TiN) films on 3T3-L1 fibroblasts.  J Biomed Mater Res A. 2003;  67 138-147
  • 144 Hole B B, Schwarz J A, Gilbert J L, Atkinson B L. A study of biologically active peptide sequences (P-15) on the surface of an ABM scaffold (PepGen P-15) using AFM and FTIR.  J Biomed Mater Res A. 2005;  74 712-721
  • 145 Huang Y, Siewe M, Madihally S V. Effect of spatial architecture on cellular colonization.  Biotechnol Bioeng. 2006;  93 64-75
  • 146 Pfister P M, Wendlandt M, Neuenschwander P, Suter U W. Surface-textured PEG-based hydrogels with adjustable elasticity: Synthesis and characterization.  Biomaterials. 2007;  28 567-575
  • 147 Tang Z G, Hunt J A. The effect of PLGA doping of polycaprolactone films on the control of osteoblast adhesion and proliferation in vitro.  Biomaterials. 2006;  27 4409-4418
  • 148 Rohman G, Pettit J J, Isaure F, Cameron N R, Southgate J. Influence of the physical properties of two-dimensional polyester substrates on the growth of normal human urothelial and urinary smooth muscle cells in vitro.  Biomaterials. 2007;  28 2264-2274
  • 149 Rompen E, Domken O, Degidi M, Pontes A E, Piattelli A. The effect of material characteristics, of surface topography and of implant components and connections on soft tissue integration: a literature review.  Clin Oral Implants Res. 2006;  17 55-67
  • 150 Tatard V M, Venier-Julienne M C, Saulnier P, Prechter E, Benoit J P, Menei P, Montero-Menei C N. Pharmacologically active microcarriers: a tool for cell therapy.  Biomaterials. 2005;  26 3727-3737
  • 151 Tatard V M, Sindji L, Branton J G, Aubert-Pouëssel A, Colleau J, Benoit J P, Montero-Menei C N. Pharmacologically active microcarriers releasing glial cell line – derived neurotrophic factor: Survival and differentiation of embryonic dopaminergic neurons after grafting in hemiparkinsonian rats.  Biomaterials. 2007;  28 1978-1988
  • 152 Davies J E. Bone bonding at natural and biomaterial surfaces.  Biomaterials. 2007;  28 5058-5067
  • 153 Brown R A, Phillips J B. Cell responses to biomimetic protein scaffolds used in tissue repair and engineering. Review.  Int Rev Cytol. 2007;  262 75-150
  • 154 Rickert D, Franke R P, Lendlein A, Kelch S, Moses M A. Influence of the surface structure of a multiblock copolymer on the cellular behavior of primary cell cultures of the upper aerodigestive tract in vitro.  J Biomed Mater Res A. 2007;  83 558-569
  • 155 Chou L, Firth J D, Uitto V J, Brunette D M. Effects of titanium substratum and grooved surface topography on metalloproteinase-2 expression in human fibroblasts.  J Biomed Mater Res. 1998;  39 437-445
  • 156 Mudera V C, Pleass R, Eastwood M, Tarnuzzer R, Schultz G, Khaw P, McGrouther D A, Brown R A. Molecular responses of human dermal fibroblasts to dual cues: contact guidance and mechanical load.  Cell Motil Cytoskeleton. 2000;  45 1-9
  • 157 Lind M, Trindade M C, Schurman D J, Goodman S B, Smith R L. Monocyte migration inhibitory factor synthesis and gene expression in particle-activated macrophages.  Cytokine. 2000;  12 909-913
  • 158 Rickert D, Scheithauer M O, Coskun S, Lendlein A, Kelch S, Franke R P. First results of the investigation of the stability and tissue integration of a degradable, elastomeric copolymer in an animal model.  Biomed Tech. 2006;  51 116-124
  • 159 Rickert D, Lendlein A, Coskum S, Scheithauer M O. Polymeric biomaterials in head and neck surgery: first results of biocompatibility testing of a degradable polymer in an animal model.  Laryngo-Rhino-Otologie. 2007;  86 507-514
  • 160 Busuttil S J, Drumm C, Plow E F. In vivo comparison of the inflammatory response induced by different vascular biomaterials.  Vascular. 2005;  13 230-235
  • 161 Rickert D, Scheithauer M O, Coskun S, Kelch S, Lendlein A, Franke R P. The influence of a multifunctional, polymeric biomaterial on the concentration of acute phase proteins in an animal model.  Clin Hemorheol Microcirc. 2007;  36 301-311
  • 162 Folkman J, Haudenschild C, Zetter B R. Long-term culture of capillary endothelial cells.  Proc Natl Acad Sci. 1979;  76 5217-5221
  • 163 Rickert D, Lendlein A, Kelch S, Franke R P. The importance of angiogenesis in the interaction between polymeric biomaterials and surrounding tissue.  Clin Hemorheol Microcirc. 2003;  28 175-181
  • 164 Rickert D, Lendlein A, Peters I, Moses M A, Franke R P. Biocompatibility testing of novel multifunctional polymeric biomaterials for tissue engineering applications in head and neck surgery: an overview.  Eur Arch Otorhinolaryngol. 2006;  263 215-222
  • 165 Kunz-Schughart L A, Schroeder J A, Wondrak M, van Rey F, Lehle K, Hofstaedter F, Wheatley D N. Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro.  Am J Physiol Cell Physiol. 2006;  290 1385-1398
  • 166 Au P, Tam J, Fukumura D, Jain R K. Small blood vessel engineering.  Methods Mol Med. 2007;  140 183-195
  • 167 Lokmic Z, Mitchell G M. Engineering the microcirculation.  Tissue Eng Part B Rev. 2008;  14 87-103
  • 168 Shapiro R S. Future issues in transplantation ethics: ethical and legal controversies in xenotransplantation, stem cell, and cloning research.  Transplant Rev. 2008;  22 210-215
  • 169 Kastenberg Z J, Odorico J S. Alternative sources of pluripotency: science, ethics, and stem cells.  Transplant Rev. 2008;  22 215-222
  • 170 Unger C, Skottman H, Blomberg P, Dilber M S, Hovatta O. Good manufacturing practice and clinical-grade human embryonic stem cell lines.  Hum Mol Genet. 2008;  17 48-53
  • 171 Burdick J A, Vunjak-Novakovic G. Review: Engineered Microenvironments for Controlled Stem Cell Differentiation.  Tissue Eng Part A. 2008;  Epub ahead of print
  • 172 Little L, Healy K E, Schaffer D. Engineering biomaterials for synthetic neural stem cell microenvironments.  Chem Rev. 2008;  108 1787-1796
  • 173 Vacanti C A. History of tissue engineering and a glimpse into its future.  Tissue Eng. 2006;  12 1137-1142
  • 174 Griffith C K, Miller C, Sainson R C, Calvert J W, Jeon N L, Hughes C C, George S C. Diffusion limits of an in vitro thick prevascularized tissue.  Tissue Eng. 2005;  11 257-266
  • 175 Schwab A P, Satin D J. The realistic costs and benefits of translational research.  Am J Bioeth. 2008;  8 60-62
  • 176 Becker A J, McCulloch E A, Till J E. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells.  Nature. 1963;  197 452-454
  • 177 Vacanti C A, Bonassar L J, Vacanti M P, Shufflebarger J. Replacement of an avulsed phalanx with tissue-engineered bone.  N Engl J Med. 2001;  344 1511-1514
  • 178 Quarto R, Mastrogiacomo M, Cancedda R, Kutepov S M, Mukhachev V, Lavroukov A, Kon E, Marcacci M. Repair of large bone defects with the use of autologous bone marrow stromal cells.  N Engl J Med. 2001;  344 385-386
  • 179 Hibi H, Yamada Y, Kagami H, Ueda M. Distraction osteogenesis assisted by tissue engineering in an irradiated mandible: a case report.  Int J Oral Maxillofac Implants. 2006;  21 141-147
  • 180 Hibi H, Yamada Y, Ueda M, Endo Y. Alveolar cleft osteoplasty using tissue-engineered osteogenic material.  Int J Oral Maxillofac Surg. 2006;  35 551-555
  • 181 Granero-Molto F, Weis J A, Longobardi L, Spagnoli A. Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair.  Expert Opin Biol Ther. 2008;  8 255-268
  • 182 Ciorba A, Martini A. Tissue engineering and cartilage regeneration for auricular reconstruction.  Int J Pediatr Otorhinolaryngol. 2006;  70 1507-1515
  • 183 Hajj R, Baranek T, Le Naour R, Lesimple P, Puchelle E, Coraux C. Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties.  Stem Cells. 2007;  25 139-148
  • 184 Yamzon J L, Kokorowski P, Koh C J. Stem cells and tissue engineering applications of the genitourinary tract.  Pediatr Res. 2008;  63 472-477
  • 185 Yang X, Moldovan N I, Zhao Q, Mi S, Zhou Z, Chen D, Gao Z, Tong D, Dou Z. Reconstruction of damaged cornea by autologous transplantation of epidermal adult stem cells.  Mol Vis. 2008;  14 1064-1070
  • 186 Bluteau G, Luder H U, De Bari C, Mitsiadis T A. Stem cells for tooth engineering.  Eur Cell Mater. 2008;  16 1-9
  • 187 Szlávik V, Szabó B, Vicsek T, Barabás J, Bogdán S, Gresz V, Varga G, O'Connell B, Vág J. Differentiation of Primary Human Submandibular Gland Cells Cultured on Basement Membrane Extract.  Tissue Eng Part A. 2008;  14 1915-1926
  • 188 Sato A, Okumura K, Matsumoto S, Hattori K, Hattori S, Shinohara M, Endo F. Isolation, tissue localization, and cellular characterization of progenitors derived from adult human salivary glands.  Cloning Stem Cells. 2007;  9 191-205
  • 189 Lombaert I M, Brunsting J F, Wierenga P K, Faber H, Stokman M A, Kok T, Visser W H, Kampinga H H, de Haan G, Coppes R P. Rescue of salivary gland function after stem cell transplantation in irradiated glands.  PloS ONE. 2008;  3 1-13

Priv.-Doz. Dr. med. Dorothee Rickert

Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Hals-Chirurgie, Marienhospital

Böheimstraße 37
70199 Stuttgart

Email: dorotheerickert@vinzenz.de