Subscribe to RSS
DOI: 10.1055/s-0029-1202300
Semen Analysis and Sperm Function Assays: What Do They Mean?
Publication History
Publication Date:
26 February 2009 (online)
ABSTRACT
Appropriate laboratory testing is an integral component of the proper evaluation of the male presenting with infertility. This article reviews the semen analysis and sperm function assays. Sperm function testing is used to determine if the sperm have the biologic capacity to perform the tasks necessary to reach and fertilize ova and ultimately result in live births. For a sperm to be fertile in vivo, it must be able to traverse the cervical mucus and reach the ova. The sperm must undergo capacitation and the acrosome reaction, fuse with the oolemma, and incorporate into the ooplasm. Proper embryo development requires that functional DNA be delivered to the ooplasm. Defects in any of these steps may result in infertility. A variety of tests are available to evaluate different aspects of these functions. To accurately use these functional assays, the clinician must understand what the tests measure, what the indications are for the assays, and how to interpret the results to direct further testing or patient management.
KEYWORDS
Semen analysis - sperm functions tests - DNA integrity - sperm penetration assay - postcoital test - reactive oxygen species - zona pellucida - acrosome reaction
REFERENCES
- 1 Guzick D S, Overstreet J W, Factor-Litvak P et al.. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med. 2001; 345 1388-1393
- 2 World Health Organization .WHO Laboratory Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction. Cambridge, United Kingdom; Cambridge University Press 1999
- 3 Smith K D, Rodriguez-Rigau L J, Steinberger E. Relation between indices of semen analysis and pregnancy rate in infertile couples. Fertil Steril. 1977; 28 1314-1319
- 4 Bostofte E, Bagger P, Michael A, Stakemann G. Fertility prognosis for infertile men: results of follow-up study of semen analysis in infertile men from two different populations evaluated by the Cox regression model. Fertil Steril. 1990; 54 1100-1106
- 5 Santomauro A G, Sciarra J J, Varma A O. A clinical investigation of the role of the semen analysis and postcoital test in the evaluation of male infertility. Fertil Steril. 1972; 23 245-251
- 6 Munuce M J, Bregni C, Carizza C, Mendeluk G. Semen culture, leukocytospermia, and the presence of sperm antibodies in seminal hyperviscosity. Arch Androl. 1999; 42 21-28
- 7 Grimes D A, Lopez L M. “Oligozoospermia,” “azoospermia,” and other semen-analysis terminology: the need for better science. Fertil Steril. 2007; 88 1491-1494
- 8 Fredricsson B, Bjork G. Morphology of postcoital spermatozoa in the cervical secretion and its clinical significance. Fertil Steril. 1977; 28 841-845
- 9 Menkveld R, Stander F S, Kotze T J, Kruger T F, van Zyl J A. The evaluation of morphological characteristics of human spermatozoa according to stricter criteria. Hum Reprod. 1990; 5 586-592
- 10 Coetzee K, Kruge T F, Lombard C J. Predictive value of normal sperm morphology: a structured literature review. Hum Reprod Update. 1998; 4 73-82
- 11 Keegan B R, Barton S, Sanchez X, Berkeley A S, Krey L C, Grifo J. Isolated teratozoospermia does not affect in vitro fertilization outcome and is not an indication for intracytoplasmic sperm injection. Fertil Steril. 2007; 88 1583-1588
- 12 Van Waart J, Kruger T F, Lombard C J, Ombelet W. Predictive value of normal sperm morphology in intrauterine insemination (IUI): a structured literature review. Hum Reprod Update. 2001; 7 495-500
- 13 Jarow J P, Sanzone J J. Risk factors for male partner antisperm antibodies. J Urol. 1992; 148 1805-1807
- 14 Bachtell N E, Conaghan J, Turek P J. The relative viability of human spermatozoa from the vas deferens, epididymis and testis before and after cryopreservation. Hum Reprod. 1999; 14 3048-3051
- 15 Wilcox A J, Weinberg C R, Baird D D. Timing of sexual intercourse in relation to ovulation. Effects on the probability of conception, survival of the pregnancy, and sex of the baby. N Engl J Med. 1995; 333 1517-1521
- 16 Jeyendran R S, Van der Ven H H, Perez-Pelaez M, Crabo B G, Zaneveld L J. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. J Reprod Fertil. 1984; 70 219-228
- 17 Matson P L, Junk S M, Spittle J W, Yovich J L. Effect of antispermatozoal antibodies in seminal plasma upon spermatozoal function. Int J Androl. 1988; 11 101-106
- 18 Practice Committee of the American Society for Reproductive Medicine . Optimal evaluation of the infertile female. Fertil Steril. 2004; 82(Suppl 1) S169-S172
- 19 Zaneveld L J, De Jonge C J, Anderson R A, Mack S R. Human sperm capacitation and the acrosome reaction. Hum Reprod. 1991; 6 1265-1274
- 20 Bedford J M. Significance of the need for sperm capacitation before fertilization in eutherian mammals. Biol Reprod. 1983; 28 108-120
- 21 Talbot P, Chacon R S. A triple-stain technique for evaluating normal acrosome reactions of human sperm. J Exp Zool. 1981; 215 201-208
- 22 Cummins J M, Pember S M, Jequier A M, Yovich J L, Hartmann P E. A test of the human sperm acrosome reaction following ionophore challenge. Relationship to fertility and other seminal parameters. J Androl. 1991; 12 98-103
- 23 Cross N L, Morales P, Overstreet J W, Hanson F W. Two simple methods for detecting acrosome-reacted human sperm. Gamete Res. 1986; 15 213-226
- 24 Lee M A, Trucco G S, Bechtol K B et al.. Capacitation and acrosome reactions in human spermatozoa monitored by a chlortetracycline fluorescence assay. Fertil Steril. 1987; 48 649-658
- 25 Makkar G, Ng E H, Yeung W S, Ho P C. The significance of the ionophore-challenged acrosome reaction in the prediction of successful outcome of controlled ovarian stimulation and intrauterine insemination. Hum Reprod. 2003; 18 534-539
- 26 Liu D Y, Stewart T, Baker H W. Normal range and variation of the zona pellucida-induced acrosome reaction in fertile men. Fertil Steril. 2003; 80 384-389
- 27 Oehninger S, Blackmore P, Morshedi M, Sueldo C, Acosta A A, Alexander N J. Defective calcium influx and acrosome reaction (spontaneous and progesterone-induced) in spermatozoa of infertile men with severe teratozoospermia. Fertil Steril. 1994; 61 349-354
- 28 Liu D Y, Baker H W. Disordered zona pellucida-induced acrosome reaction and failure of in vitro fertilization in patients with unexplained infertility. Fertil Steril. 2003; 79 74-80
- 29 Consensus workshop on advanced diagnostic andrology techniques. ESHRE (European Society of Human Reproduction and Embryology) Andrology Special Interest Group . Hum Reprod. 1996; 11 1463-1479
- 30 Quintero I, Ghersevich S, Caille A, Munuce M J, Daniele S M, Morisoli L. Effects of human oviductal in vitro secretion on spermatozoa and search of sperm-oviductal proteins interactions. Int J Androl. 2005; 28 137-143
- 31 Fenichel P, Donzeau M, Farahifar D, Basteris B, Ayraud N, Hsi B L. Dynamics of human sperm acrosome reaction: relation with in vitro fertilization. Fertil Steril. 1991; 55 994-999
- 32 Henkel R, Muller C, Miska W, Gips H, Schill W B. Determination of the acrosome reaction in human spermatozoa is predictive of fertilization in vitro. Hum Reprod. 1993; 8 2128-2132
- 33 Katsuki T, Hara T, Ueda K, Tanaka J, Ohama K. Prediction of outcomes of assisted reproduction treatment using the calcium ionophore-induced acrosome reaction. Hum Reprod. 2005; 20 469-475
- 34 Liu D Y, Clarke G N, Martic M, Garrett C, Baker H W. Frequency of disordered zona pellucida (ZP)-induced acrosome reaction in infertile men with normal semen analysis and normal spermatozoa-ZP binding. Hum Reprod. 2001; 16 1185-1190
- 35 Liu D Y, Baker H W. A simple method for assessment of the human acrosome reaction of spermatozoa bound to the zona pellucida: lack of relationship with ionophore A23187-induced acrosome reaction. Hum Reprod. 1996; 11 551-557
- 36 Burkman L J, Coddington C C, Franken D R, Krugen T F, Rosenwaks Z, Hogen G D. The hemizona assay (HZA): development of a diagnostic test for the binding of human spermatozoa to the human hemizona pellucida to predict fertilization potential. Fertil Steril. 1988; 49 688-697
- 37 Arslan M, Morshedi M, Arslan E O et al.. Predictive value of the hemizona assay for pregnancy outcome in patients undergoing controlled ovarian hyperstimulation with intrauterine insemination. Fertil Steril. 2006; 85 1697-1707
- 38 Liu D Y, Baker H W. Defective sperm-zona pellucida interaction: a major cause of failure of fertilization in clinical in-vitro fertilization. Hum Reprod. 2000; 15 702-708
- 39 Liu D Y, Clarke G N, Lopata A, Johnston W I, Baker H W. A sperm-zona pellucida binding test and in vitro fertilization. Fertil Steril. 1989; 52 281-287
- 40 Yanagimachi R, Yanagimachi H, Rogers B J. The use of zona-free animal ova as a test-system for the assessment of the fertilizing capacity of human spermatozoa. Biol Reprod. 1976; 15 471-476
- 41 Oehninger S, Franken D R, Sayed E, Barroso G, Kolm P. Sperm function assays and their predictive value for fertilization outcome in IVF therapy: a meta-analysis. Hum Reprod Update. 2000; 6 160-168
- 42 Alvarez J G, Storey B T. Taurine, hypotaurine, epinephrine and albumin inhibit lipid peroxidation in rabbit spermatozoa and protect against loss of motility. Biol Reprod. 1983; 29 548-555
- 43 Chow C K. Vitamin E and oxidative stress. Free Radic Biol Med. 1991; 11 215-232
- 44 Niki E. Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am J Clin Nutr. 1991; 54(6, Suppl) 1119S-1124S
- 45 Griveau J F, Renard P, Le Lannou D. An in vitro promoting role for hydrogen peroxide in human sperm capacitation. Int J Androl. 1994; 17 300-307
- 46 Aitken J, Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioessays. 1994; 16 259-267
- 47 Aitken R J, Clarkson J S, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod. 1989; 41 183-197
- 48 Athayde K S, Cocuzza M, Agarwal A et al.. Development of normal reference values for seminal reactive oxygen species and their correlation with leukocytes and semen parameters in a fertile population. J Androl. 2007; 28 613-620
- 49 Marchetti C, Obert G, Deffosez A, Formstecher P, Marchetti P. Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Hum Reprod. 2002; 17 1257-1265
- 50 Agarwal A, Sharma R K, Nallella K P, Thomas Jr A J, Alvarez J G, Sikka S C. Reactive oxygen species as an independent marker of male factor infertility. Fertil Steril. 2006; 86 878-885
- 51 Aitken R J, Irvine D S, Wu F C. Prospective analysis of sperm-oocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility. Am J Obstet Gynecol. 1991; 164 542-551
- 52 Sukcharoen N, Keith J, Irvine D S, Aitken R J. Prediction of the in-vitro fertilization (IVF) potential of human spermatozoa using sperm function tests: the effect of the delay between testing and IVF. Hum Reprod. 1996; 11 1030-1034
- 53 Zorn B, Vidmar G, Meden-Vrtovec H. Seminal reactive oxygen species as predictors of fertilization, embryo quality and pregnancy rates after conventional in vitro fertilization and intracytoplasmic sperm injection. Int J Androl. 2003; 26 279-285
- 54 Saleh R A, Agarwal A, Nada E A et al.. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003; 79(Suppl 3) 1597-1605
- 55 Hammadeh M E, Radwan M, Al-Hasani S et al.. Comparison of reactive oxygen species concentration in seminal plasma and semen parameters in partners of pregnant and non-pregnant patients after IVF/ICSI. Reprod Biomed Online. 2006; 13 696-706
- 56 Ahmadi A, Ng S C. Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool. 1999; 284 696-704
- 57 Cho C, Jung-Ha H, Willis W D et al.. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod. 2003; 69 211-217
- 58 Evenson D P, Jost L K, Marshall D et al.. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999; 14 1039-1049
- 59 Zini A, Bielecki R, Phang D, Zenzes M T. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001; 75 674-677
- 60 Aravindan G R, Bjordahl J, Jost L K, Evenson D P. Susceptibility of human sperm to in situ DNA denaturation is strongly correlated with DNA strand breaks identified by single-cell electrophoresis. Exp Cell Res. 1997; 236 231-237
- 61 Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997; 68 519-524
- 62 Fernandez J L, Muriel L, Rivero M T, Goyanes V, Vazquez R, Alvarez J G. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003; 24 59-66
- 63 Spano M, Bonde J P, Hjollund H I, Kolstad H A, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril. 2000; 73 43-50
- 64 Loft S, Kold-Jensen T, Hjollund N H et al.. Oxidative DNA damage in human sperm influences time to pregnancy. Hum Reprod. 2003; 18 1265-1272
- 65 Duran E H, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod. 2002; 17 3122-3128
- 66 Bungum M, Humaidan P, Axmon A et al.. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007; 22 174-179
- 67 Muriel L, Meseguer M, Fernandez J L et al.. Value of the sperm chromatin dispersion test in predicting pregnancy outcome in intrauterine insemination: a blind prospective study. Hum Reprod. 2006; 21 738-744
- 68 Payne J F, Raburn D J, Couchman G M, Price T M, Jamison M G, Walmer D K. Redefining the relationship between sperm deoxyribonucleic acid fragmentation as measured by the sperm chromatin structure assay and outcomes of assisted reproductive techniques. Fertil Steril. 2005; 84 356-364
- 69 Zini A, Meriano J, Kader K, Jarvi K, Laskin C A, Cadesky K. Potential adverse effect of sperm DNA damage on embryo quality after ICSI. Hum Reprod. 2005; 20 3476-3480
- 70 Borini A, Tarozzi N, Bizzaro D et al.. Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod. 2006; 21 2876-2881
- 71 Benchaib M, Lornage J, Mazoyer C, Lejeune H, Salle B, Francois Guerin J. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril. 2007; 87 93-100
- 72 Lin M H, Kuo-Kuang Lee R, Li S H, Lu C H, Sun F J, Hwu Y M. Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertil Steril. 2008; 90 352-359
- 73 Frydman N, Prisant N, Hesters L et al.. Adequate ovarian follicular status does not prevent the decrease in pregnancy rates associated with high sperm DNA fragmentation. Fertil Steril. 2008; 89 92-97
- 74 Martin R H, Rademaker A W, Greene C et al.. A comparison of the frequency of sperm chromosome abnormalities in men with mild, moderate, and severe oligozoospermia. Biol Reprod. 2003; 69 535-539
- 75 Shi Q, Martin R H. Aneuploidy in human spermatozoa: FISH analysis in men with constitutional chromosomal abnormalities, and in infertile men. Reproduction. 2001; 121 655-666
Mark SigmanM.D.
Associate Professor Surgery (Urology), Brown University
Suite 174, 2 Dudley Street, Providence, RI 02905
Email: MSigman@Lifespan.org