References and Notes
For selective reviews, see:
1a
Welton T.
Chem.
Rev.
1999,
99:
2071
1b
Wasserscheid P.
Keim W.
Angew. Chem. Int. Ed.
2000,
39:
3772
1c
Hagiwara R.
Ito Y.
J. Fluorine Chem.
2000,
105:
221
1d
De Souza Dupont RF.
Suarez PA.
Chem.
Rev.
2002,
102:
3667
1e
Rogers RD.
Seddon KR.
Ionic Liquids Industrial Applications to Green
Chemistry
ACS Symposium Series 818;
Washington:
2001.
1f
Wasserscheid P.
Welton T.
Ionic Liquids in Synthesis
2nd
ed.:
Wiley-VCH;
Weinheim:
2008.
1g
Rogers RD.
Seddon KR.
Ionic Liquids as Green Solvents. Progress
and Prospects
Oxford University Press;
USA
Washington:
2003.
1h
Song CE.
Chem. Commun.
2004,
1033
1i
Jain N.
Kumar A.
Chauhan S.
Chauhan SMS.
Tetrahedron
2005,
61:
1015
1j
Malhotra SV.
Kumar V.
Parmar VS.
Curr. Org. Synth.
2007,
4:
370
1k
Durand J.
Teuma E.
Gómez M.
Comptes
Rendus Chimie
2007,
10:
152
1l
Parvulescu
VI.
Hardacre C.
Chem. Rev.
2007,
107:
2615
1m
Plechkova NV.
Seddon KR.
Chem.
Soc. Rev.
2008,
37:
123
1n
Toma S.
Meciarová M.
Šebesta R.
Eur. J. Org. Chem.
2009,
3:
321
2a
Baldwin JE.
Branz SE.
Walker JA.
J.
Org. Chem.
1977,
42:
4142
2b
Yen SK.
Koh LL.
Hahn FE.
Huynh HV.
Hor ATS.
Organometallics
2006,
25:
5105
2c
Davis JS.
Forrester KJ.
Tetrahedron
Lett.
1999,
40:
1621
For recent reviews on microwave
chemistry, see:
3a
De la Hoz A.
Diaz-Ortis A.
Moreno A.
Langa F.
Eur. J. Org.
Chem.
2000,
3659
3b
Alterman M.
Hallberg A.
J. Org. Chem.
2000,
65:
7984
3c
Perreux L.
Loupy A.
Tetrahedron
2001,
57:
9199
3d
Lidström P.
Tierney J.
Wathey P.
Westman J.
Tetrahedron
2001,
57:
9225
3e
Hayes BL.
Microwave Synthesis:
Chemistry at the Speed of Light
CEM Publishing;
Matthews
NC:
2002.
3f
Microwaves
in Organic Synthesis
Loupy A.
Wiley-VCH;
Weinheim:
2006.
3g
Kappe CO.
Stadler A.
Microwaves in Organic and Medicinal Chemistry
Wiley-VCH;
Weinheim:
2005.
3h
Ermolat’ev DS.
Gimenez
VN.
Babaev EV.
Van der Eycken E.
J.
Comb. Chem.
2006,
8:
659
4a
Loupy A.
Petit A.
Hamelin J.
Texier-Boullet F.
Jacquault P.
Mathé P.
Synthesis
1998,
1213
4b
Varma RS.
Green Chem.
1999,
1:
43
4c
Tanaka K.
Solvent-free Organic Synthesis
Wiley-VCH;
Weinheim:
2003.
4d
Polshettiwar V.
Varma RS.
Acc. Chem. Res.
2008,
41:
629
5a
Varma RS.
Namboodiri VV.
Chem. Commun.
2001,
643
5b
Varma RS.
Namboodiri VV.
Pure
Appl. Chem.
2001,
73:
1309
5c
Khadilkar BM.
Rebeiro GL.
Org. Proc.
Res. Dev.
2002,
6:
826
5d
Law MC.
Wong KY.
Chan TH.
Green
Chem.
2002,
4:
328
5e
Varma RS.
Namboodiri VV.
Chem.
Commun.
2002,
342
5f
Dubreuil JF.
Famelart MH.
Bazureau JP.
Org. Proc. Res. Dev.
2002,
6:
374
5g
Varma RS.
Namboodiri VV.
Tetrahedron
Lett.
2002,
43:
5381
5h
Deetlefs M.
Seddon KS.
Green Chem.
2003,
5:
181
6
Vo-Thanh G.
Pégot B.
Loupy A.
Eur.
J. Org. Chem.
2004,
1112
7a
Lévêque JM.
Estager J.
Draye M.
Boffa L.
Cravotto G.
Bonrath W.
Monatsh.
Chem.
2007,
138:
1103
7b
Cravotto G.
Calcio-Gaudino E.
Boffa L.
Lévêque JM.
Estager J.
Bonrath W.
Molecules
2008,
13:
149
8
Suarez PAZ.
Dullius JEL.
Einloft S.
Souza RF.
Dupont J.
Polyhedron
1996,
15:
1217
9a
Stetter H.
Schreckenberg M.
Angew.
Chem. Int. Ed. Engl.
1973,
12:
81
9b
Stetter H.
Angew.
Chem. Int. Ed. Engl.
1976,
15:
639
9c
Stetter H.
Kuhlmann H.
Org. React.
1991,
40:
407
For recent reports on the Stetter
reaction, see:
10a
Raghavan S.
Anuradha K.
Tetrahedron Lett.
2002,
43:
5181
10b
Enders D.
Kallfass U.
Angew. Chem. Int. Ed.
2002,
41:
1743
10c
Nair V.
Bindu S.
Sreekuma V.
Angew.
Chem. Int. Ed.
2004,
43:
5130
10d
Cesar V.
Bellemin-Laponnaz S.
Gade LH.
Chem. Soc. Rev.
2004,
33:
619
10e
Barrett AGM.
Love AC.
Tedeschi L.
Org. Lett.
2004,
6:
3377
10f
Enders D.
Belensiefer T.
Acc. Chem. Res.
2004,
37:
534
10g
Mattson AE.
Bharadwaj AR.
Scheidt KA.
J. Am. Chem. Soc.
2004,
126:
2314
10h
Anjaiah S.
Chandrasekhar S.
Grée R.
Adv.
Synth. Catal.
2004,
346:
1329
10i
Nakamura T.
Hara O.
Tamura T.
Makino K.
Hamada Y.
Synlett
2005,
155
10j
Christmann M.
Angew.
Chem. Int. Ed.
2005,
44:
2632
10k
Zhou ZZ.
Ji FQ.
Cao M.
Yang GF.
Adv.
Synth. Catal.
2006,
348:
1826
10l
Webber P.
Krische MJ.
Chemtracts: Org.
Chem.
2007,
19:
262
10m
Read de Alaniz J.
Kerr MS.
Moore L.
Rovis T.
J.
Org. Chem.
2008,
73:
2033
11
Ciganek E.
Synthesis
1995,
1311
12
General Procedure
for the Solvent-Free N-Alkylation of Thiazole under Microwave Irradiation: A
mixture of thiazole 1 (85 mg, 1 mmol) and
1-iodoalkane 2 (1.5 mmol) was irradiated
(CEM Discover reactor) at 150 ˚C for the appropriate
time (see Table
[¹]
).
The reaction mixture was brought to room temperature and washed
with Et2O (2 × 10 mL). The
crude product was dried under reduced pressure to afford a yellow
powder which did not need further purification.
1-Butylthiazolium Iodide
M.p.
101 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 0.99
(3 H, t, J = 7.5
Hz), 1.40-1.47 (2 H, m), 2.00-2.05 (2 H,
m), 4.83 (2 H, t, J = 7.5
Hz), 8.28 (1 H, d, J = 2.6
Hz), 8.34 (1 H, d, J = 3.4 Hz), 10.95 (1 H,
s). ¹³C NMR (75 MHz, CDCl3): δ = 13.9,
19.8, 32.9, 56.5, 127.5, 137.0, 159.6. IR (KBr): 3434, 3020, 2945,
1989, 1829, 1637, 1543, 1434, 1256, 1144, 952, 861, 639 cm-¹.
HRMS (EI): m/z [M+] calcd
for C7H12NS: 142.0685; found: 142.0690.
1-Octylthiazolium Iodide
M.p.
27 ˚C. ¹H NMR (300 MHz, CDCl3): δ =0.74
(3 H, t, J = 7.2
Hz), 1.21-1.26 (10 H, m), 1.91-1.96 (2 H,
m), 4.73 (2 H, t, J = 7.1
Hz), 8.4 (1 H, d, J = 3.4
Hz), 8.54 (1 H, d, J = 3.8
Hz), 10.69 (1 H, s). ¹³C NMR
(90 MHz, CDCl3): δ = 14.0, 22.5, 26.1,
28.8, 28.9, 30.6, 31.6, 56.3, 127.8, 136.9, 158.6. IR (NaCl): 3445,
3046, 2926, 2855, 1621, 1551, 1463, 1422, 1262, 1154, 907, 833,
749, 634 cm-¹. HRMS (EI): m/z [M+] calcd
for C11H20NS: 198.1313; found: 198.1316.
1-Decylthiazolium Iodide
M.p.
39 ˚C. ¹H NMR (360 MHz, CDCl3): δ = 0.79
(3 H, t, J = 6.1
Hz), 1.17-1.28 (14 H, m), 1.96-1.97 (2 H,
m), 4.76 (2 H, t, J = 7.0
Hz), 8.42 (1 H, d, J = 1.8
Hz), 8.54 (1 H, d, J = 3.2
Hz), 10.72 (1 H, s). ¹³C NMR
(90 MHz, CDCl3): δ = 13.7, 22.1, 25.6,
28.5, 28.7, 28.8, 28.9, 30.2, 31.3, 55.8, 127.5, 136.6, 158.2. IR
(KBr): 3435, 3078, 2922, 2852, 1555, 1471, 1370, 1264, 1150, 905,
812, 630 cm-¹. HRMS (EI): m/z [M+] calcd
for C13H24NS: 226.1625; found: 226.1629.
1-Dodecylthiazolium Iodide
M.p.
92 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 0.86
(3 H, t, J = 7.0
Hz), 1.27-1.34 (18 H, m), 1.99-2.04 (2 H,
m), 4.80 (2 H, t, J = 7.5
Hz), 8.41 (1 H, d, J = 3.4
Hz), 8.47 (1 H, d, J = 3.6
Hz), 10.79 (1 H, s). ¹³C NMR
(90 MHz, CDCl3): δ = 14.0, 22.6, 26.1,
28.9, 29.2, 29.3, 29.4, 29.5, 29.6, 30.6, 31.8, 56.3, 127.6, 136.6,
159.0. IR (KBr): 3096, 3079, 2916, 2850, 1556, 1472, 1258, 1149,
908, 811 cm-¹. HRMS (EI): m/z [M+] calcd
for C15H28NS: 254.1933; found: 254.1942.
General Procedure for Solvent-Free ‘One-Pot’ Preparation
of Alkylthiazolium 4 from 1 under Microwave Irradiation: A
mixture of thiazole 1 (85 mg, 1 mmol),
1-iodooctane (360 mg, 1.5 mmol) and alkaline salt MY (1.5 mmol),
was irradiated (CEM Discover reactor) at 150 ˚C
for 1.3 h (see Table
[²]
).
The reaction mixture was brought to room temperature and CH2Cl2 (10
mL) were added. After filtration, the solvent was evaporated. The crude
product was washed with Et2O (2 × 10
mL) and dried under reduced pressure to afford a yellow viscous
oil which did not need further purification.
1-Octylthiazolium Trifluoromethanesulfonate
¹H
NMR (250 MHz, CDCl3): δ = 0.84 (3 H,
t, J = 4.8
Hz), 1.23-1.32 (10 H, m), 1.96-2.02 (2 H,
m), 4.68 (2 H, t, J = 7.3
Hz), 8.29 (1 H, d, J = 3.8
Hz), 8.38 (1 H, d, J = 3.8 Hz),
10.42 (1 H, s). ¹³C NMR (90
MHz, CDCl3): δ = 14.0, 22.5, 26.1,
28.8, 28.9, 30.5, 31.6, 56.1, 127.1, 137.0, 158.2. IR (NaCl): 3500,
3084, 2928, 2858, 1633, 1553, 1468, 1258, 1225, 1162, 1030, 914,
836, 757, 639 cm-¹. HRMS (EI):
m/z [M+] calcd
for C11H20NS: 198.1308; found: 198.1316.
1-Octylthiazolium Hexafluorophosphate
M.p.
27 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 0.83
(3 H, t, J = 6.0
Hz), 1.22-1.31 (10 H, m), 1.98-2.02 (2 H,
m), 4.73 (2 H, t, J = 7.5
Hz), 8.36 (1 H, d, J = 2.6
Hz), 8.44 (1 H, d, J = 3.8
Hz), 10.54 (1 H, s). ¹³C NMR
(90 MHz, CDCl3): δ = 13.9, 22.3, 25.8,
28.7, 28.8, 30.5, 31.4, 56.0, 127.6, 136.7, 158.3. IR (NaCl): 3440,
3084, 2929, 2856, 1602, 1553, 1469, 1174, 1012, 905, 750 cm-¹.
HRMS (EI): m/z [M+] calcd
for C11H20NS: 198.1309; found: 198.1316.
1-Octylthiazolium Tetrafluoroborate
¹H
NMR (300 MHz, CDCl3): δ = 0.83 (3 H,
t, J = 7.1
Hz), 1.28-1.32 (10 H, m), 1.99-2.03 (2 H,
m), 4.79 (2 H, t, J = 7.5
Hz), 8.42 (1 H, d, J = 3.4
Hz), 8.52 (1 H, d, J = 3.4 Hz),
10.57 (1 H, s). ¹³C NMR (90
MHz, CDCl3): δ = 14.3, 22.8, 26.4,
29.1, 29.2, 30.8, 31.9, 56.6, 127.2, 137.2, 158.6. IR (NaCl): 3445,
3094, 2929, 2858, 1607, 1553, 1469, 1352, 1194, 1058, 915, 740 cm-¹.
HRMS (EI): m/z [M+] calcd
for C11H20NS: 198.1308; found: 198.1309.
Solvent-Free Microwave-Promoted ‘Two-Step,
One-Pot Sequence’ Preparation of Octylthiazolium Bis(trifluoromethanesulfonyl)imide: A
mixture of thiazole 1 (85 mg, 1 mmol) and
1-bromooctane (360 mg, 1.5 mmol) was irradiated (CEM Discover reactor)
at 150 ˚C for 1.3 h. Lithium bis(tstrifluoromethanesulfonyl)imide
(373 mg, 1.5 mmol) was added and the resulting mixture was then placed
under MW irradiation for an additional period of 30 min at 100 ˚C.
The reaction mixture was brought to room temperature and CH2Cl2 (10
mL) was added. After filtration, the solvent was evaporated. The
crude product was washed with Et2O (2 × 10
mL) and dried under reduced pressure to afford a yellow viscous
oil (356 mg, 75%) which did not need further purification.
1-Octylthiazolium Bis(trifluoromethanesulfonyl)imide
M.p.
30 ˚C. ¹H NMR (360 MHz, CDCl3): δ = 0.84
(3 H, t, J = 6.6
Hz), 1.25-1.35 (10 H, m), 1.97-2.05 (2 H,
m), 4.73 (2 H, t, J = 7.5
Hz), 8.35 (1 H, d, J = 3.6
Hz), 8.42 (1 H, d, J = 3.6
Hz), 10.52 (1 H, s). ¹³C NMR
(90 MHz, CDCl3): δ = 13.4, 21.9, 25.5,
28.2, 28.3, 30.1, 31.0, 55.7, 127.2, 136.4, 158.1. IR (NaCl): 3436,
3064, 2926, 2855, 1622, 1553, 1463, 1267, 1154, 906, 834 cm-¹.
HRMS (EI): m/z [M+] calcd
for C11H20NS: 198.1314; found: 198.1316.
Representative Procedure for Microwave-Assisted Intramolecular
Stetter Reaction: A mixture of methyl 4-(2-formylphenoxy)but-2-enoate 6 (Z = H; 0.11
g, 0.5 mmol), Et3N (51 mg, 0.5 mmol) and octylthiazolium
iodide (25 mg, 15% mol) was irradiated at 100 ˚C
for 20 minutes. The reaction was quenched with 0.1 N HCl and extracted with
CH2Cl2. The organic phase was washed with
H2O, dried over MgSO4, filtered and concentrated
in vacuum to afford a pale-orange oil 7 (107
mg, 97% yield).
Methyl 2-(3,4-Dihydro-4-oxo-2
H
-chromen-3-yl)acetate
¹H
NMR (250 MHz, CDCl3): δ = 2.42 (1 H,
dd, J = 8.2, 16.8 Hz), 2.92 (1 H, dd, J = 5.1, 17.1
Hz), 3.28-3.36 (1 H, m), 3.71 (3 H, s), 4. 28 (1 H, t, J = 11.7 Hz),
4.58 (1 H, dd, J = 5.4,
11.1 Hz), 6.99 (1 H, dd, J = 8.8,
15.5 Hz), 7.46 (1 H, t, J = 8.2
Hz), 7.86 (1 H, d, J = 7.9
Hz). ¹³C NMR (90 MHz, CDCl3): δ = 29.9,
42.4, 51.9, 70.1, 117.7, 121.4, 135.9, 161.4, 171.7, 192.4. IR (NaCl):
3583, 2953, 1738, 1694, 1606, 1580, 1480, 1324, 1301, 1215, 1014,
870, 760 cm-¹. HRMS (EI): m/z [M + Na+] calcd
for C12H12O4Na: 243.0627; found:
243.0633.