Synlett 2009(12): 1945-1948  
DOI: 10.1055/s-0029-1217523
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of an Ovoid Chiral Cage

François Couty, Olivier R. P. David*
UniverSud Paris, Institut Lavoisier, Université de Versailles St Quentin-en-Yvelines, UMR 8180, 45 Avenue des Etats-Unis,78035 Versailles, France
Fax: +33(1)39254452; e-Mail: odavid@chimie.uvsq.fr;
Further Information

Publication History

Received 13 January 2009
Publication Date:
01 July 2009 (online)

Abstract

Evidence for the formation of an ovoid chiral cage, resulting from the auto-assembly of two hexafunctional and three tetrafunctional modules reacting through dynamic covalent bond formation, is provided.

    References and Notes

  • 1 Xuejun L. Warmuth R. J. Am. Chem. Soc.  2008,  14120 
  • 2 Steinmetz V. Couty F. David ORP. Chem. Commun.  2009,  343 
  • 3a For imide formation, see: Rejman D. Kočalka P. Buděšínský M. Pohl R. Rosenberg I. Tetrahedron  2007,  1243 
  • 3b For LiAlH4 reduction, see: Bridgeman E. Cavill JL. Schofield DJ. Wilkins DS. Tomkinson NCO. Tetrahedron Lett.  2005,  8521 
  • 3c For mesylation, see: Nagel U. Kinzel E. Andrade J. Prescher G. Chem. Ber.  1986,  3326 
  • 3d For azide substitution, see: Reddy DR. Thornton ER. J. Chem. Soc., Chem. Commun.  1992,  172 ; We experimented with the replacement of LiN3 by a stoichiometric mixture of NaN3 and LiCl in DMF, and found that the substitution reaction did proceed with a yield similar to the one reported in the above article (˜75%)
  • 3e For azide reduction and Boc-protection, see: Ganapati Reddy P. Verabhadra Pratap T. Kishore Kumar GD. Mohanty SK. Baskaran S. Eur. J. Org. Chem.  2002,  3740 
  • 3f For benzyl hydrogenolysis, see: Löwik DWPM. Weingarten MD. Broekema M. Brouwer AJ. Still WC. Liskamp RMJ. Angew. Chem. Int. Ed.  1998,  1846 
  • 4a Gawronski J. Kobon H. Kwit M. Katrusiak A.
    J. Org. Chem.  2000,  65:  5768 
  • 4b Chadim M. Budesínský M. Hodacová J. Závada J. Junk PC. Tetrahedron: Asymmetry  2001,  12:  127 
  • 4c Kuhnert N. Rossignolo GM. Lopez-Periago A. Org. Biomol. Chem.  2003,  1:  1157 
  • 4d Kuhnert N. Lopez-Periago A. Rossignolo GM. Org. Biomol. Chem.  2005,  3:  524 
  • 4e Gawronski J. Gawronska K. Grajewski J. Kwit M. Plutecka A. Rychlewska U. Chem. Eur. J.  2006,  12:  1807 
5

Preparation of cage 11. Hexammonium 9 (39.1 mg, 36.5 µmol) was treated with NaHCO3 (40 mg, 475 µmol, 13 equiv) in H2O (2 mL). The water was evaporated under vacuum and the solid residue was washed with CH2Cl2 to extract the free amine. After evaporation of the organic solvent, the light-yellow resin was redissolved in CH2Cl2
(5 mL) and MeOH (0.5 mL). Tripod 4 (19.2 mg, 24.3 µmol, 0.67 equiv) was added and the mixture was stirred at r.t. for 3 d. At this time, the mixture was slightly turbid and TLC indicated complete consumption of starting tripod 4 [R f  = 0.25 (CH2Cl2-MeOH, 9:1)]. The reaction mixture was filtered and the solvents were evaporated under high vacuum (in order to prevent extensive polymerization, no heating was applied) to furnish a light-yellow resin (33 mg). Compound 11 was suspended in CDCl3 (0.5 mL), CD3OD (0.2 mL) was added and the NMR analyses were performed. ¹H NMR (300 MHz, CDCl3 + CD3OD): δ = 1.60 (m), 2.29 (m), 2.5-3.2 (m), 3.3 (d, J = 12 Hz), 3.45 (d, J = 12 Hz), 3.93 (m), 4.15 (m), 4.24 (m), 4.78 (m), 4.82 (m), 6.87 (s, 6 H), 7.24 (s, 6 H), 7.42 (s, 6 H), 7.70 (s, 6 H), 7.98 (s, 6 H), 8.03 (s, 6 H); ¹³C NMR (75 MHz, CDCl3 + CD3OD): δ = 29.3, 33.7, 36.7, 48.6, 49.0, 49.5, 66.5, 124.5, 124.6, 125.2, 136.7, 143.3, 158.1, 158.2, 179.2; HRMS was obtained from the same solution. HRMS (ESI, TOF MS): m/z calcd for [M + 2Na]²+ 1279.6372; found: 1279.6306 (-5.15 ppm).