Subscribe to RSS
DOI: 10.1055/s-0029-1217566
Synthesis of Fluorinated Analogues of Tumor-Associated Carbohydrate and Glycopeptide Antigens
Publication History
Publication Date:
15 July 2009 (online)
Abstract
Partial structures of tumor-associated mucin glycoproteins are interesting target structures for the development of selective anticancer vaccines. To probe the effect of fluorination on the immunological and metabolic properties of mucin glycopeptides, six novel fluorinated glycosyl-threonine conjugates have been synthesized. The synthesis of the orthogonally protected glycosyl amino acids was achieved using microwave irradiation in key fluorination and glycosylation steps. The 2′-deoxy-2′-fluoro- and 6′-deoxy-6′-fluoro-T antigen building blocks were applied to the synthesis of analogues of MUC1 tandem repeat-glycopeptide antigens via SPPS.
Key words
fluorinated carbohydrates - glycopeptide antigens - MUC1 - solid-phase synthesis - microwave-assisted glycosylations
-
1a
Varki A. Glycobiology 1993, 3: 97 -
1b
Lis H.Sharon N. Eur. J. Biochem. 1993, 218: 1 -
1c
Dwek RA. Chem. Rev. 1996, 96: 683 -
2a
Feizi T. Nature (London) 1985, 314: 53 -
2b
Springer GF. Science 1984, 224: 1198 - Reviews:
-
3a
Taylor-Papadimitriou J.Burchell JM.Miles DW.Dalziel M. Biochim. Biophys. Acta Mol. Basis Dis. 1999, 1455: 301 -
3b
Hanisch FG. Biol. Chem. 2001, 382: 143 -
3c
Dziadek S.Espínola CG.Kunz H. Aust. J. Chem. 2003, 56: 519 -
3d
Becker T.Dziadek S.Wittrock S.Kunz H. Curr. Cancer Drug Targets 2006, 6: 491 -
3e
Liakatos A.Kunz H. Curr. Opin. Mol. Ther. 2007, 9: 35 -
4a
Glaudemans CPJ. Chem. Rev. 1991, 91: 25 -
4b
Namchuk M.Braun C.McCarter JD.Withers SG. In Biomedical Frontiers of Fluorine Chemistry, ACS Symposium Series Vol. 639:Ojima I.McCarthy JR.Welch JT. American Chemical Society; Washington DC: 1996. p.279 -
5a
Lemieux RU.Cromer R.Spohr U. Can. J. Chem. 1988, 66: 3083 -
5b
Glaudemans CPJ.Kováč P.Rao AS. Carbohydr. Res. 1989, 190: 267 -
5c
Holm B.Baquer SM.Holm L.Holmdahl R.Kihlberg J. Bioorg. Med. Chem. 2003, 11: 3981 - 6
Tsuchiya T. Adv. Carbohydr. Chem. Biochem. 1990, 48: 91 -
7a
Card PJ. J. Carbohydr. Chem. 1985, 4: 451 -
7b
Dax K.Albert M.Ortner J.Paul B. J. Carbohydr. Res. 2000, 327: 47 -
7c
Miethchen R. J. Fluorine Chem. 2004, 125: 895 -
8a
Rexford LT.Saeed AA.Matta KL. Carbohydr. Res. 1987, 165: C14 -
8b
Xia J.Alderfer JL.Piskorz CF.Locke RD.Matta KL. Synlett 2003, 1291 -
8c
Xia J.Xue J.Locke RD.Chandrasekaran EV.Srikrishnan T.Matta KL. J. Org. Chem. 2006, 71: 3696 -
9a
Vincent SP.Burkart MD.Tsai C.-Y.Zhang Z.Wong C.-H. J. Org. Chem. 1999, 64: 5264 -
9b
Albert M.Paul BJ.Dax K. Synlett 1999, 1483 -
9c
Maschauer S.Pischetsrieder M.Kuwert T.Prante O. J. Labelled Compd. Radiopharm. 2005, 48: 701 -
9d
Maschauer S.Kuwert T.Prante O. J. Labelled Compd. Radiopharm. 2006, 49: 101 -
10a
Brocke C.Kunz H. Synlett 2003, 2052 -
10b
Brocke C.Kunz H. Synthesis 2004, 525 -
11a
Burkart MD.Vincent SP.Düffels A.Murray BW.Ley SV.Wong C.-H. Bioorg. Med. Chem. 2000, 8: 1937 -
11b
Brackhagen M.Boye H.Vogel C. J. Carbohydr. Chem. 2001, 20: 31 -
11c
Kobayashi S.Yoneda A.Fukuhara T.Hara S. Tetrahedron Lett. 2004, 45: 1287 - 13
Kent PW.Wright JR. Carbohydr. Res. 1972, 22: 193 - 14
Lemieux RU.Ratcliffe RM. Can. J. Chem. 1979, 57: 1244 -
15a
Koenigs W.Knorr E. Ber. Dtsch. Chem. Ges. 1901, 34: 957 -
15b
Paulsen H.Hölck J.-P. Carbohydr. Res. 1982, 109: 89 -
16a
Paulsen H.Adermann K. Liebigs Ann. Chem. 1989, 751 -
16b
Kunz H. In Preparative Carbohydrate ChemistryHanessian S. Marcel Dekker; New York: 1997. p.265 -
17a
Liebe B.Kunz H. Angew. Chem., Int. Ed. Engl. 1997, 36: 618 -
17b
Liebe B.Kunz H. Helv. Chim. Acta 1997, 80: 1473 - 18
Schmidt RR.Stumpp M. Liebigs Ann. Chem. 1983, 1249 - 20
Dziadek S.Brocke C.Kunz H. Chem. Eur. J. 2004, 10: 4150 -
21a
Marra A.Sinaÿ P. Carbohydr. Res. 1989, 187: 35 -
21b
Keil S.Claus C.Dippold W.Kunz H. Angew. Chem. Int. Ed. 2001, 40: 366 -
22a
Withers SG.Street IP.Bird P.Dolphin DH. J. Am. Chem. Soc. 1987, 109: 7530 -
22b
Withers SG.Rupitz K.Street IP. J. Biol. Chem. 1988, 263: 7929 -
23a
Barbieri L.Costantino V.Fattorusso E.Mangoni A.Basilico N.Mondani M.Taramelli D. Eur. J. Org. Chem. 2005, 3279 -
23b
Kasuya MC.Ito A.Hatanaka K. J. Fluorine Chem. 2007, 128: 562 -
23c
Benito D.Matheu MI.Morère A.Díaz Y.Castillón S. Tetrahedron 2008, 64: 10906 - 24 Review:
Nyffeler PT.Durón SG.Burkart MD.Vincent SP.Wong C.-H. Angew. Chem. Int. Ed. 2005, 44: 192 - 26
Burchell J.Taylor-Papadimitriou J.Boshell M.Gendler SJ.Duhig T. Int. J. Cancer 1989, 44: 691 - 28
Carpino LA.Han GY. J. Am. Chem. Soc. 1970, 92: 5748 - 30
Knorr R.Trzeciak A.Bannwarth W.Gillessen D. Tetrahedron Lett. 1989, 30: 1927 -
31a
Carpino LA. J. Am. Chem. Soc. 1993, 115: 4397 -
31b
Carpino LA.El-Faham AS.Minor C.Albericio F. J. Chem. Soc., Chem. Commun. 1994, 201
References and Notes
CEM Discover microwave reactor.
19
Typical Experimental
Procedure
A solution of acceptor 7 (150
mg, 0.25 mmol) in anhyd MeNO2-CH2Cl2 (3:2,
4 mL) was stirred with Hg(CN)2 (125 mg, 0.49 mmol) and
activated pulverized MS 4 Å (200 mg) for 30 min under argon.
A solution of donor 3 (185 mg, 0.49 mmol)
in anhyd MeNO2-CH2Cl2 (3:2,
4 mL) was added, and the reaction mixture was irradiated in a microwave
reactor for 5 h (80 ˚C, 100 W), diluted with CH2Cl2 (20
mL), and filtered through Hyflo Supercel. The filtrate was washed with
sat. aq NaHCO3 (10 mL) and brine (10 mL), dried (MgSO4),
and concentrated in vacuo. Flash chromatography on silica gel (cyclohexane-EtOAc,
5:1) afforded 9 as a colorless, amorphous
solid (162 mg, 73%); R
f
= 0.53 (cyclohexane-EtOAc,
5:1); [α]D
²³ 39.42
(c 1, CHCl3).
Compound β-20
[α]D
²³ = 55.74
(c 1, CHCl3); t
R = 14.6
min [Perfectsil C18, grad.: MeCN-H2O,
(50:50) → (90:10), 30 min → (100:0), 10 min]. ¹H
NMR (400 MHz, CDCl3, COSY): δ = 5.43
(d, 1 H, 4-H, J
3,4 = 2.0
Hz), 5.36-5.32 (m, 1 H, 4′-H), 5.10-5.00 (m,
1 H, 3′-H), 4.87 (d, 1 H, 1-H, J
1,2 = 3.5
Hz), 4.65 (dt, 1 H, 2-H, J
2,1 = 3.6
Hz, J
2,3 = 10.6
Hz), 4.60-4.37 (m, 4 H, 1′-H {4.57},
2′-H, CH2 (Fmoc) {4.52}),
4.29-4.08 (m, 6 H, Tα {4.23},
Tβ {4.16}, 6a-H {4.11},
5′-H {4.13}, 6a′-H {4.21}, 9-H
(Fmoc) {4.22}), 4.03-3.84 (m, 3 H, 5-H,
6b-H, 6b′-H), 4.03-3.94 (m, 1 H, 3′-H),
3.79 (dd, 1 H, 3-H, J
3,4 = 3.2
Hz, J
2,3 = 11.0
Hz), 2.12 [s, 3 H, CH3(Ac)], 2.10 [s,
3 H, CH3(Ac)], 2.03 [s, 9 H, 3 × CH3(Ac)],
1.97 [s, 3 H, CH3(NHAc)], 1.44 [s,
9 H, CH3(t-Bu)],
1.28 (d, 3 H, Tγ, J
T
γ
,Tβ = 6.1
Hz) ppm. ¹³C NMR (100.6 MHz, CDCl3,
BB, HMQC): δ = 101.9 (d, C1′, J
C1
′
,F = 23.5
Hz), 100.3 (C1), 87.8 (d, C2′, J
C2
′
,F = 186.2
Hz), 83.2 [Cq(t-Bu)],
77.5 (C3), 77.2 (Tβ), 70.8 (d, C3′, J
C3
′
,F = 19.1
Hz), 70.5 (C5), 69.0 (C4), 68.1 (C5′), 67.2 (d, C4′, J
C4
′
,F = 8.0
Hz,), 66.8 (CH2-Fmoc), 63.2 (C6′), 60.8 (C6)
59.0 (Tα), 48.0 (C2), 47.2 (CH-Fmoc), 28.0 [CH3(t-Bu)], 23.0 [CH3(NHAc)],
20.8, 20.7, 20.6, 20.5, 20.5 [CH3 (Ac)],
18.5 (Tγ) ppm. ESI-MS (pos. ion mode): m/z calcd for C47H59FN2NaO19:
997.36; found: 997.34 [M + Na]+.
Applied Biosystems 433A peptide synthesizer.
29Rapp Polymere GmbH.
32
Compound 22
[α]D
²5 = -97.61
(c 1, CHCl3); t
R = 21.2
min [Luna C18, grad.: MeCN-H2O + 0.1% TFA,
(5:95) → (50:50), 80 min → (100:0), 20 min]. ¹H
NMR (400 MHz, DMSO-d
6, COSY): δ = 8.25
(d, 1 H, RNH, J
NH,
α = 7.2
Hz), 8.21 (d, 1 H, DNH, J
NH,
α = 8.7
Hz), 8.10 (d, 1 H, ANH, J
NH,
α = 7.3
Hz) 8.00 (d, 1 H, ANH, J
NH,
α = 7.3
Hz), 7.92 (d, 1 H, SNH, J
NH,
α = 8.0 Hz),
7.61-7.53 (m, 2 H, TNH {7.56},
RGua {7.58}), 6.93 (d, 1 H, NH-GalNAc, J
NH,2 = 8.7
Hz), 4.69-4.62 (m, 2 H, 1-H {4.67}, Dα {4.65}),
4.58 (m, 1 H, 6′a-H), 4.54-4.43 (m, 3 H, Aα {4.51},
Rα {4.47}, 6′b-H {4.47}),
4.43-4.36 (m, 2 H, Aα {4.40},
Tα {4.39}), 4.36-4.29
(m, 2 H, 2 × Pα {4.33}, {4.31}),
4.28-4.23 (m, 2 H, Sα {4.26},
1′-H {4,24}), 4.20 (dd, 1 H, Pα, J
α
,
β
a = 4.4
Hz, J
α
,
β
b = 8.7
Hz), 4.17-4.12 (m, 1 H, 2-H), 4.11-4.08 (m, 1
H, Tβ), 3.89-3.85 (m, 1 H, 4-H), 3.76-3.60
(m, 3 H, 5′-H {3.69}, 5-H {3.65},
4′-H {3.63}), 3.61-3.38 (m,
11 H, Sβ {3.52}, 3 × Pδ {3.54},
6a-H {3.43}, 6b-H {3.41}, 3-H {3.57}),
3.35-3.28 (m, 2 H, 2′-H {3.52}, 4′-H {3.30}),
3.15-3.01 (m, 2 H, Rδ), 2.75 (dd, 1
H, Dβ
a, J
β
a
,
α = 6.4
Hz, J
β
a
,
β
b = 16.5
Hz), 2.49 (m, 1 H, Dβ
b, under DMSO-d
6), 2.18-2.09 (m,
1 H, Pβ
a), 2.07-1.97 (m,
2 H, 2 × Pβ
a, {2.06}, {2.01}),
1.94-1.74 [m, 15 H, 6 × Pγ {1.91}, {1.88}, {1.83},
3 × Pβ
b {1.84}, {1.81}, {1.78},
2 × CH3 (NHAc)],
1.73-1.65 (m, 1 H, Rβ
a),
1.59-1.42 (m, 3 H, Rβ, {1.52},
Rβ
b {1.49}), 1.19
(d, 3 H, Aβ, J
α
,
β = 7.4
Hz), 1.17 (d, 3 H, Aβ, J
α
,
β = 7.4
Hz), 1.10 (d, 3 H, Tγ, J
β
,
γ = 6.4
Hz) ppm. ¹³C NMR (100.6 MHz, CDCl3,
BB, HMQC): δ = 173.3, 171.9,
171.8, 171.0, 170.8, 170.5, 170.5, 169.7, 169.7, 169.6, 169.4 (12 × C=O),
156.8 (C=N), 104.8 (C1′), 98.6 (C1), 83.3 (d,
C6′, J
C6
′
,F = 166.9
Hz), 78.8 (C3), 75.0 (Tβ), 73.1 (d, C5′, J
C5
′
,F = 19.1
Hz), 72.5 (C3′), 71.3 (C5), 70.5 (C2′), 68.0 (d,
C4′, J
C4
′
,F = 6.5
Hz), 67.8 (C4), 61.8 (Sβ), 60.6 (C6), 59.5,
59.0, 58.5 (3 × Pα),
55.8 (Tα), 55.0 (Sα), 50.1
(Rα), 49.3 (Dα), 48.0 (C2),
46.7, 46.5, 46.3, 46.3 (2 × Aα,
3 × Pδ), 40.5 (Rδ),
35.9 (Dβ), 29.1, 28.8, 28.6 (3 × Pβ),
28.3 (Rβ), 24.8 (Rγ), 24.6,
24.4, 24.3 (3 × Pγ),
23.1, 22.6 [2 × CH3(NHAc)], 18.3
(Tγ) 17.1, 16.6 (2 × Aβ)
ppm. ESI-MS (pos. ion mode): m/z calcd
for C54H87FN13O24: 1320.59;
found: 1320.60 [M + H]+.