Subscribe to RSS
DOI: 10.1055/s-0029-1217761
Novel DABCO-Catalyzed Regio- and Diastereoselective Nucleophilic Substitution of Baylis-Hillman Acetates with TosMIC
Publication History
Publication Date:
04 September 2009 (online)
Abstract
An efficient DABCO-mediated regio- and diastereoselective substitution of Baylis-Hillman acetates with p-toluenesulfonylmethyl isocyanide (TosMIC) has been developed via a tandem SN2′-SN2′ mechanism. The products were obtained in excellent yields (80-92%) and in moderate diastereoselectivity (66-80%).
Key words
Baylis-Hillman acetates - p-Toluenesulfonylmethyl isocyanide (TosMIC) - DABCO
- 1
Comprehensive
Organic Synthesis
Vol. 1-9:
Trost B.Fleming I. Pergamon; New York: 1991. -
2a
Yasuda M.Somyo T.Baba A. Angew. Chem. Int. Ed. 2006, 45: 793 -
2b
Zhang Y.Li C.-J. Angew. Chem. Int. Ed. 2006, 45: 1949 -
3a
Yadav LDS.Awasthi C.Rai A. Tetrahedron Lett. 2008, 49: 6360 -
3b
Aggarwal HVK.Patin A.Tisserand S. Org. Lett. 2005, 7: 2555 -
3c
Lee YS.Kim SH.Gowrisankar S.Kim JN. Tetrahedron 2008, 64: 7183 -
3d
Gowrisankar S.Lee HS.Lee KY.Lee JE.Kim JN. Tetrahedron Lett. 2007, 48: 8619 -
3e
Park DY.Kim SJ.Kim TH.Kim JN. Tetrahedron Lett. 2006, 47: 6315 -
4a
Masson G.Housseman C.Zhu J. Angew. Chem. Int. Ed. 2007, 4614 -
4b
Chung YM.Gong JH.Kim TH.Kim JN. Tetrahedron Lett. 2001, 42: 9023 -
4c
Du Y.Han X.Lu X. Tetrahedron Lett. 2004, 45: 4967 -
4d
Li J.Wang X.Zhang Y. Tetrahedron Lett. 2005, 46: 5233 -
4e
Singh V.Yadav GP.Maulik PR.Batra S. Tetrahedron 2006, 62: 8731 -
4f
Lee KY.Gowrisankar S.Lee YJ.Kim JN. Tetrahedron 2006, 62: 8798 -
4g For preparation of Baylis-Hillman
acetates, see:
Singh V.Yadav GP.Maulik PR.Batra S. Tetrahedron 2008, 64: 2979 -
4h
Basavaiah D.Krishnamacharyulu M.Hyma RS.Sarma PKS.Kumaragurubaran N. J. Org. Chem. 1999, 64: 1197 -
5a
Van Leusen D.Van Leusen AM. Org. React. 2001, 57: 417 -
5b
Ramana Reddy VV. Synlett 2005, 363 -
6a
Radha Krishna P.Dayaker G.Narasimha Reddy PV. Tetrahedron Lett. 2006, 47: 5977 -
6b
Radha Krishna P.Lopinti K. Synlett 2007, 83 -
7a
Radha Krishna P.Ramana Reddy VV.Sharma GVM. Synlett 2003, 1619 -
7b
Sharma GVM.Radha Krishna P. Curr. Org. Chem. 2004, 8: 1187 -
7c
Radha Krishna P.Ramana Reddy VV.Srinivas R. Tetrahedron 2007, 63: 9871 -
8a
Radha Krishna P.Raja Sekhar E.Prapurna YL. Tetrahedron Lett. 2007, 48: 9048 -
8b
Radha Krishna P.Raja Sekhar E. Adv. Synth. Catal. 2008, 350: 2871 -
9a
Radha Krishna P.Manjuvani A.Kannan V.Sharma GVM. Tetrahedron Lett. 2004, 45: 1183 -
9b
Radha Krishna P.Kannan V.Reddy PVN. Adv. Synth. Catal. 2004, 346: 603 -
9c
Radha Krishna P. .Kannan V. Chem. Commun. 2004, 2580 -
9d
Radha Krishna P.Kannan V.Sharma GVM.Ramana Rao MHV. Synlett 2003, 888 -
9e
Radha Krishna P.Kannan V.Sharma GVM. Synth. Commun. 2004, 34: 55 -
10a
Radha Krishna P.Narsingam M.Reddy PS.Srinivasulu G.Kunwar AC. Tetrahedron Lett. 2005, 46: 8885 -
10b
Radha Krishna P.Narsingam M.Kannan V. Tetrahedron Lett. 2004, 45: 4773 -
10c
Radha Krishna P.Raja Sekhar E.Mongin F. Tetrahedron Lett. 2008, 49: 6768 -
11a
Cho C.-W.Kong J.-R.Krische MJ. Org. Lett. 2004, 6: 1337 -
11b
Singh V.Yadav GP.Maulik PR.Batra S. Tetrahedron 2006, 62: 8798 -
12a
Cho C.-W.Krische MJ. Angew. Chem. Int. Ed. 2004, 43: 6689 -
12b
Yadav LDS.Rai VK. Tetrahedron Lett. 2009, 50: 2414 -
16a
Sasaki H.Kitagawa T. Chem. Pharm. Bull. 1983, 31: 756 -
16b
Sasaki H.Kitagawa T. Chem. Pharm. Bull. 1987, 35: 4747 -
16c
Sasaki H.Nakagawa M.Khuhara M.Kitagawa T. Chem. Lett. 1988, 1531 -
16d
Sisko J. J. Org. Chem. 1998, 63: 4529
References and Notes
On the advice of one of the referees and in order to ascertain whether the postulated mechanism is directing the product formation or a direct substitution reaction is the path followed, an independent reaction was conducted under similar reaction conditions wherein TosMIC was treated with DABCO first for 1 h at r.t., and then acetate 1 was added. The reaction was found to be sluggish even after 24 h. Hence it may be inferred that a disubstitution could be the plausible mechanistic pathway.
14
General Experimental
Procedure
To a solution of Baylis-Hillman
acetate (1.0 mmol) and DABCO (0.3 mmol) in CH2Cl2 (3.0
mL) TosMIC (1.0 mmol) was added and stirred for 1-2 h at
r.t. After completion of the reaction as indicated by TLC, H2O
(5 mL) was added, and the product was extracted with CH2Cl2 (2 × 10
mL). The combined organic layers were washed with brine, dried (Na2SO4),
and purified by column chromatog-raphy (silica gel, 60-120
mesh, EtOAc-n-hexane = 1:9
to 2:8) to afford products 2a-h in 80-92% yields.
Spectral Data
for Selected Compounds
Compound 2a: ¹H
NMR (400 MHz, CDCl3): δ = 7.81
(d, 2 H, J = 8.30
Hz, ArH), 7.41-7.16 (m, 7 H, ArH), 6.38 (s, 1 H, olefinic),
5.87 (s, 1 H, olefinic), 5.75 (d, 0.90 H, J = 8.68
Hz, CHAr), 5.48 (d, 0.10 H, J = 11.70
Hz, CHAr), 4.44 (d, 1 H, J = 8.49
Hz, CHTos), 4.30-4.06 (m, 2 H, CH2), 2.48 (s,
3 H, CH3), 1.39 (t, 3 H, J = 7.17
Hz, CH3). ¹³C NMR (100 MHz, CDCl3): δ = 14.0,
21.8, 48.5, 61.2, 73.2, 128.0, 128.6, 128.8, 129.8, 131.9, 135.7,
137.5, 146.2, 165.4, 166.4. IR (KBr): 2982, 2134, 1708, 1322, 1148,
757, 705, 664, 566 cm-¹.
LC-MS: m/z = 383.9 [M + H]+.
Anal. Calcd (%) for C21H21NO4S:
C, 65.78; H, 5.52; N, 3.65. Found: C, 65.81; H, 5.50; N, 3.68.
Compound 2b: ¹H NMR (400 MHz,
CDCl3): δ = 7.81-7.72 (m,
2 H, ArH), 7.62-7.33 (m, 6 H, ArH), 6.41 (s, 1 H, olefinic),
5.82 (s, 1 H, olefinic), 5.61 (d, 0.88 H, J = 8.03
Hz, CHAr), 5.42 (d, 0.12 H, J = 9.67
Hz, CHAr), 4.62 (d, 1 H, J = 8.05
Hz, CHTos), 4.30-4.01 (m, 2 H, CH2), 2.49 (s,
3 H, CH3), 1.34-1.18 (m, 3 H, CH3). ¹³C
NMR (75 MHz, CDCl3): δ = 13.9,
21.8, 47.8, 61.6, 72.6, 112.3, 118.2, 129.3, 129.5, 129.8, 130.0,
130.1, 132.4, 136.9, 140.9, 146.8, 165.1, 167.5. IR (KBr): 2985,
2229, 1707, 1317, 1146, 756, 576 cm-¹.
LC-MS: m/z = 407 [M - H]+.
Anal. Calcd (%) for C22H20N2O4S:
C, 64.69; H, 4.94; N, 6.86. Found: C, 64.67; H, 4.97; N, 6.89.
Compound 2d: ¹H NMR (300 MHz,
CDCl3): δ = 7.76
(d, 2 H, J = 8.30
Hz, ArH), 7.33 (d, 2 H, J = 8.30
Hz, ArH), 7.19 (d, 1 H, J = 3.77
Hz, ArH), 7.09 (d, 1 H, J = 3.07
Hz, ArH), 6.91 (q, 1 H, J = 3.77
Hz, ArH), 6.44 (s, 1 H, olefinic), 5.92 (s, 1 H, olefinic), 5.57
(d, 0.87 H, J = 7.55
Hz, CHAr), 5.37 (d, 0.13 H, J = 9.63
Hz, CHAr), 4.94 (d, 1 H, J = 7.55
Hz, CHTos), 4.30-4.05 (m, 2 H, CH2), 2.47 (s,
3 H, CH3), 1.36 (t, 3 H, J = 6.79
Hz, CH3). ¹³C NMR (100 MHz,
CDCl3): δ = 14.2,
21.8, 44.2, 61.2, 74.8, 125.9, 126.7, 128.6, 129.4, 129.7, 130.0,
132.0, 138.0, 146.2, 165.0, 165.6. IR (KBr): 2982, 2134, 1708, 1322,
1148, 757, 705, 664, 566 cm-¹. LC-MS: m/z = 389 [M + H]+.
Anal. Calcd (%) for C19H19NO4S2: C,
58.59; H, 4.92; N, 3.60. Found: C, 58.61; H, 4.94; N, 3.63.
Compound 2h: ¹H NMR (400 MHz,
CDCl3): δ = 7.81
(d, 2 H, J = 8.02
Hz, ArH), 7.35 (d, 2 H, J = 8.00
Hz, ArH), 6.37 (s, 1 H, olefinic), 5.78 (s, 1 H, olefinic), 4.82
(d, 0.88 H, J = 6.83
Hz, CHTos), 4.79 (d, 0.12 H, J = 7.88
Hz, CHTos), 4.29-4.12 (m, 2 H, CH2), 3.71-3.68
(m, 1 H, CHCH3), 2.50 (s, 3 H, CH3), 1.43
(d, 3 H, J = 6.59
Hz, CH3), 1.34 (t, 3 H, J = 7.31
Hz, CH3). ¹³C NMR (100 MHz,
CDCl3): δ = 13.6, 14.1,
21.9, 34.8, 61.3, 74.8, 128.6, 129.4, 130.0, 138.5, 146.2, 165.1,
165.6. IR (KBr): 2974, 2133, 1705, 1505, 1317, 1146, 1084, 1022,
812, 759, 670, 577, 521 cm-¹. LC-MS:
321 [M - H]+. Anal.
Calcd (%) for C16H19NO4S:
C, 59.79; H, 5.96; N, 4.36. Found: C, 59.81; H, 5.94; N, 4.33.