Synlett 2009(15): 2465-2468  
DOI: 10.1055/s-0029-1217825
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Iodine-Mediated Guanidine Formation through Arylsulfonyl-Activated Thioureas

Cuiying Qina, Jizhen Li*a, Erkang Fan*b
a College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. of China
Fax: 0086(431)88499179; e-Mail: ljz@jlu.edu.cn;
b Biomolecular Structure Center, Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
Fax: +1(206)6857002; e-Mail: erkang@u.washington.edu;
Further Information

Publication History

Received 27 April 2009
Publication Date:
17 August 2009 (online)

Abstract

Reaction of arylsulfonyl thioureas with amines to form guanidines can be efficiently promoted through the use of iodine, instead of conventional reagents such as the Mukaiyama reagent or EDC. The general scope and limitations of the reaction are probed.

    References and Notes

  • 1a Cordes H. Boas U. Olsen P. Heegaard PMH. Biomacromolecules  2007,  8:  3578 
  • 1b Blanco JLJ. Bootello P. Benito JM. Mellet CO. Fernandez JMG. J. Org. Chem.  2006,  71:  5136 
  • 1c Bewley CA. Ray S. Cohen F. Collins SK. Overman LE. J. Nat. Prod.  2004,  67:  1319 
  • 1d Chang L.-C. Whittaker NF. Bewley CA. J. Nat. Prod.  2003,  66:  1490 
  • 1e Tassoni E. Giannessi F. Brunetti T. Pessotto P. Renzulli M. Travagli M. Rajamaki S. Prati S. Dottori S. Corelli F. Cabri W. Carminati P. Botta M. J. Med. Chem.  2008,  51:  3073 
  • 1f Ghorai P. Kraus A. Keller M. Gotte C. Igel P. Schneider E. Schnell D. Bernhardt G. Dove S. Zalbel M. Elz S. Seifert R. Buschauer A. J. Med. Chem.  2008,  51:  7193 
  • 2a Zapf CW. Creighton CJ. Tomioka M. Goodman M. Org. Lett.  2001,  3:  1133 
  • 2b Zhang Y. Kennan AJ. Org. Lett.  2001,  3:  2341 
  • 2c Guisado O. Martínez S. Pastor J. Tetrahedron Lett.  2002,  43:  7105 
  • 2d Yet L. Albany Molecular Research Inc., Technical Reports   Vol. 3:  Albany Molecular Research, Inc.; Albany NY: 1999.  No. 6.
  • 2e Zapf CW. Goodman M. J. Org. Chem.  2003,  68:  10092 
  • 2f Feichtinger K. Sings HL. Baker TJ. Matthews K. Goodman M. J. Org. Chem.  1998,  63:  8432 
  • 2g Manimala JC. Anslyn EV. Eur. J. Org. Chem.  2002,  23:  3909 
  • 3 Schneider SE. Bishop PA. Salazar MA. Bishop OA. Anslyn EV. Tetrahedron  1998,  54:  15063 
  • 4a Chandrakumar NS. Synth. Commun.  1996,  26:  2613 
  • 4b Kim KS. Qian L. Tetrahedron Lett.  1993,  34:  7677 
  • 5a Shibanuma T. Shiono M. Mukaiyama T. Chem. Lett.  1977,  575 
  • 5b Yong YF. Kowalski JA. Lipton MA. J. Org. Chem.  1997,  62:  1540 
  • 5c Chen J. Pattarawarapan M. Zhang AJ. Burgess K. J. Comb. Chem.  2000,  2:  276 
  • 6a Ghosh AK. Hol WGJ. Fan E. J. Org. Chem.  2001,  66:  2161 
  • 6b Linton BR. Carr AJ. Orner BP. Hamilton AD. J. Org. Chem.  2000,  65:  1566 
  • 6c Powell DA. Ramsden PD. Batey RA. J. Org. Chem.  2003,  68:  2300 
  • 6d Schroif-Grégoire C. Barale K. Zaparucha A. Al-Mourabit A. Tetrahedron Lett.  2007,  48:  2357 
  • 6e Balakrishnan S. Zhao C. Zondlo NJ. J. Org. Chem.  2007,  72:  9834 
  • 7a Li JZ. Zhang GT. Zhang ZS. Fan E. J. Org. Chem.  2003,  68:  1611 
  • 7b Zhang ZS. Fan E. J. Org. Chem.  2005,  70:  8801 
  • 7c Zhang ZS. Pickens JC. Hol WGJ. Fan E. Org. Lett.  2004,  6:  1377 
  • 7d Zhang ZS. Carter T. Fan E. Tetrahedron Lett.  2003,  44:  3063 
  • 8 Li JZ. Zhang ZF. Fan E. Tetrahedron Lett.  2004,  45:  1267 
  • 9 Li JZ. Kou JP. Luo XY. Fan E. Tetrahedron Lett.  2008,  49:  2761 
  • 10 Martin NI. Liskamp RMJ. J. Org. Chem.  2008,  73:  7849 
  • 11 Flemer S. Madalengoitia JS. Synthesis  2007,  12:  1848 
  • 12a Shibahara F. Kitagawa A. Yamaguchi E. Murai T. Org. Lett.  2006,  8:  5621 
  • 12b Downer-Riley NK. Jackson YA. Tetrahedron  2007,  63:  10276 
  • 12c Kobayashi K. Miyamoto K. Yamase T. Nakamura D. Morikawa O. Konishi H. Bull. Chem. Soc. Jpn.  2006,  79:  1580 
  • 12d Kim I. Kim SG. Kim JY. Lee GH. Tetrahedron Lett.  2007,  48:  8976 
  • 12e Kobayashi K. Hashimoto K. Shiokawa T. Morikawa O. Konishi H. Synthesis  2007,  6:  0824 
  • 14a Poss MA. Iwanowicz E. Reid J. Lin J. Gu Z. Tetrahedron Lett.  1992,  33:  5933 
  • 14b Robinson S. Roskamp EJ. Tetrahedron  1997,  53:  6697 
  • 14c Gavrilyuk JI. Evinder G. Batey RA. J. Comb. Chem.  2006,  8:  237 
  • 15 Flemer S. Madalengoitia JS. J. Org. Chem.  2008,  73:  7593 
13

[ N -(2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl)- N ′-(2-ethoxycarbonylethyl)- N ′′-benzyl guanidine (5o): Iodine (0.0928 g, 0.35 mmol) was added to a solution of thiourea 3e (0.0495 g, 0.12 mmol) dissolved in THF (4 mL), followed by DIPEA (0.0491 g, 0.35 mmol). After 10 min, BnNH2 (0.0388 g, 0.35 mmol) was added to the mixture, and the reaction mixture was stirred overnight at room temperature. The residue obtained after evaporation of the solvent was separated by silica gel column (petroleum ether-EtOAc) to afford 5o as a white solid (0.0364 g, 63%). MS: m/z = 502.3 [M + H]+. ¹H NMR (300 MHz, CDCl3): δ = 1.20-1.25 (t, J = 7.2 Hz, 3 H), 1.47 (s, 6 H), 2.10 (s, 3 H), 2.46-2.48 (d, J = 5.7 Hz, 2 H), 2.50 (s, 3 H), 2.58 (s, 3 H), 2.95 (s, 2 H), 3.44-3.50 (m, 2 H), 4.03-4.10 (m, 2 H), 4.30-4.32 (m, 2 H), 7.18-7.20 (m, 2 H), 7.29-7.31 (m, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 12.4, 14.1, 17.9, 19.2, 21.0, 28.6, 33.9, 36.9, 43.2, 45.4, 60.9, 86.3, 117.3, 124.4, 127.1, 127.8, 127.8, 132.3, 133.2, 138.4, 154.7, 158.6, 172.7. Anal. Calcd for C26H35N3O5S: C, 62.25; H, 7.03; N, 8.38. Found: C, 62.14; H, 7.12; N, 8.57.