Synlett 2010(1): 145-149  
DOI: 10.1055/s-0029-1218545
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Chiral Aziridination of Olefins Using a Chiral Sulfinamide as the Nitrogen Source

Vasco D. B. Bonifácioa, Concepción González-Bellob, Henry S. Rzepac, Sundaresan Prabhakar*a, Ana M. Lobo*a
a Chemistry Department, REQUIMTE/CQFB, and SINTOR-UNINOVA, Faculty of Sciences and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
Fax: +351(21)2948550; e-Mail: aml@fct.unl.pt;
b Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
c Chemistry Department, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AY, UK
Further Information

Publication History

Received 28 July 2009
Publication Date:
02 December 2009 (online)

Abstract

Chiral aziridination of cyclic α-bromoenones is achieved by the use of the lithium salt of (S S)-(+)-p-toluenesulfinamide, which leads to products with diastereomeric excesses in the range of 30-65% using a simple protocol. A key factor associated with chiral induction is the incorporation of the reacting olefin in a cycle, indicating the importance of conformational restriction in the reacting double bond.

    References and Notes

  • 1a Aziridines and Epoxides in Organic Synthesis   Yudin AK. Wiley-VCH; Weinheim: 2006. 
  • 1b Jacobsen EN. Comprehensive Asymmetric Catalysis   Vol. 2:  Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Berlin: 1999.  p.607 
  • 1c Pearson WH. Lian BW. Bergmeier SC. In Comprehensive Heterocyclic Chemistry II   Vol. 1A:  Padwa A. Pergamon; Oxford: 1996.  p.1 
  • 1d Rai KML. Hassner A. In Comprehensive Heterocyclic Chemistry II   Vol. 1A:  Padwa A. Pergamon; Oxford: 1996.  p.6196 
  • 2 For useful biological activities of aziridines, see: Yadav LD. Rai A. Rai VK. Awasthi C. Tetrahedron Lett.  2008,  49:  687 ; and references therein
  • For the synthesis of oseltamivir, the anti-influenza neuraminidase inhibitor, using an aziridine intermediate, see:
  • 3a Nie L.-D. Shi X.-X. Ko KH. Lu W.-D. J. Org. Chem.  2009,  74:  3970 
  • 3b Yamatsugu K. Yin L. Kamijo S. Kimura Y. Kanai M. Shibasaki M. Angew. Chem. Int. Ed.  2009,  48:  1070 
  • 3c Satoh N. Akiba T. Yokoshima S. Fukuyama T. Tetrahedron  2009,  65:  3239 
  • 3d Trost BM. Zhang T. Angew. Chem. Int. Ed.  2008,  47:  3759 
  • 3e Shibasaki M. Kanai M. Eur. J. Org. Chem.  2008,  1839 
  • 3f Yeung Y.-Y. Hong S. Corey EJ. J. Am. Chem. Soc.  2006,  128:  6310 
  • 3g Fukuta Y. Mita T. Fukuda N. Kanai M. Shibasaki M. J. Am. Chem. Soc.  2006,  128:  6312 
  • For azinomycins, see:
  • 4a Hodgkinson TJ. Shipman M. Tetrahedron  2001,  57:  4467 
  • 4b Coleman RS. Kong JS. Richardson TE. J. Am. Chem. Soc.  1999,  121:  9088 
  • 4c Coleman RS. Li J. Navarro A. Angew. Chem. Int. Ed.  2001,  40:  1736 
  • 5 Remers WA. In The Chemistry of Antitumor Antibiotics   Vol. 1:  Wiley-Interscience; New York: 1979.  p.242 
  • 5b Kasai M. Kono M. Synlett  1992,  778 
  • 6a Taylor AM. Schreiber SL. Tetrahedron Lett.  2009,  50:  3230 
  • 6b Chan JWW. Ton TMU. Zhang Z. Xu Y. Chan PWH. Tetrahedron Lett.  2009,  50:  161 
  • 6c Singh GS. D’hooghe M. De Kimpe N. Chem. Rev.  2007,  107:  2080 
  • 6d Muller P. Fruit C. Chem. Rev.  2003,  2905 
  • 6e Sweeney JB. Chem. Soc. Rev.  2002,  31:  247 
  • 6f Ibuka I. Chem. Soc. Rev.  1998,  27:  145 
  • 6g Osborn HMI. Sweeney JB. Tetrahedron: Asymmetry  1997,  8:  1693 
  • 6h Li A.-H. Dai L.-X. Aggarwal VK. Chem. Rev.  1997,  97:  2341 
  • 6i Tanner D. Angew. Chem., Int. Ed. Engl.  1994,  33:  599 
  • 7a Minakata S. Morino Y. Oderaotoshi Y. Komatsu M. Chem. Commun.  2007,  3337 
  • 7b D’hooghe M. Boelens M. Piqueur J. Kimpe N. Chem. Commun.  2007,  1927 
  • 8a Fioravanti S. Morea S. Morreale A. Pellacani L. Tardella PA. Tetrahedron  2009,  65:  484 
  • 8b Chigboh K. Morton D. Nadin A. Stockman RA. Tetrahedron Lett.  2008,  49:  4768 
  • 8c Duan P.-W. Chiu C.-C. Lee W.-D. Pan LS. Venkatesham U. Tzeng Z.-H. Chen K. Tetrahedron: Asymmetry  2008,  19:  682 
  • 8d Fernandez I. Valdivia V. Gori B. Alcudia F. Alvarez E. Khiar N. Org. Lett.  2005,  7:  1307 
  • 8e Ulukanli S. Karabuga S. Celik A. Kazaz C. Tetrahedron Lett.  2005,  46:  197 
  • 8f Chenna PHD. Peillard FR. Dauban P. Dodd RH. Org. Lett.  2004,  6:  4503 
  • 8g Cavallo AS. Roje M. Welter R. Sinjic V. J. Org. Chem.  2004,  69:  1409 
  • 8h Redlich M. Hossain MM. Tetrahedron Lett.  2004,  45:  8987 
  • 8i Calhorda MJ. Vaz PD. Chemtracts: Inorg. Chem.  2004,  17:  396 
  • 8j Barros MT. Maycock CD. Ventura MR. Tetrahedron Lett.  2002,  43:  4329 
  • 8k Gillespie KM. Sanders CJ. Shaughnessy PO. Westmoreland I. Thickitt CP. Scott P. J. Org. Chem.  2002,  67:  3450 
  • 8l Nishimura M. Minakata S. Takahashi T. Oderaotoshi Y. Komatsu M. J. Org. Chem.  2002,  67:  2101 
  • 8m Aggarwal VK. Alonso E. Ferrara M. Spey SE. J. Org. Chem.  2002,  67:  2335 
  • 8n Wei H.-X. Kim SH. Li G. Tetrahedron  2001,  57:  8401 
  • 9 Pereira MM. Santos PPO. Reis LV. Lobo AM. Prabhakar S. J. Chem. Soc., Chem. Commun.  1993,  38 
  • 10a Antunes MM. Bonifácio VDB. Nascimento CC. Lobo AM. Branco PS. Prabhakar S. Tetrahedron  2007,  63:  7009 
  • 10b Antunes AMM. Marto SJ. Branco PS. Prabhakar S. Lobo AM. Chem. Commun.  2001,  405 
  • 11a Aires-de-Sousa J. Prabhakar S. Lobo AM. Rosa AM. Gomes MJS. Corvo MC. Williams DJ. White AJP. Tetrahedron: Asymmetry  2002,  12:  3349 
  • 11b Aires-de-Sousa J. Lobo AM. Prabhakar S. Tetrahedron Lett.  1996,  37:  3183 
  • 12 Murugan E. Siva A. Synthesis  2005,  2022 
  • 13a Davis FA. Wu Y. Yan H. McCoull W. Prasad KR. J. Org. Chem.  2003,  68:  2410 
  • 13b Davis FA. Zhou P. Reddy GV. J. Org. Chem.  1994,  59:  3243 
  • 14 The lithium salt of (S S)-(+)-1 was prepared as in: Wenschuh V. Fritzsche B. J. Prakt. Chem.  1970,  312:  129 ; its configuration stability in the chiral sulfur was ascertained by recovering (S S)-(+)-1 with the same specific rotation of +85.6 (c 0.95, CH3Cl) from the salt
  • All α-bromo(iodo)olefins 2 were obtained by dihalogenation of the double bond followed by base-catalyzed elimination of the β-halogen while reforming the olefin:
  • 16a Compound 2a: Kowalski CJ. Weber AE. Fields KW. J. Org. Chem.  1982,  47:  5088 
  • 16b Compounds 2b,c: Bordwell FG. Wellman KM. J. Org. Chem.  1963,  28:  2544 
  • 16c Compound 2d: Smith AB. Branca SJ. Guaciaro MA. Wovkulich PM. Korn A. Org. Synth., Coll. Vol. VII  1990,  271 
  • 16d Compound 2e: Johnson CR. Adams JP. Braun MP. Senanayake CBW. Wovkulich PM. Uskokovic MR. Tetrahedron Lett.  1992,  7:  917 
  • 16e Compound 2f: Wakui T. Otsuji Y. Imoto E. Bull. Chem. Soc. Jpn.  1974,  2267 
  • 16f Compound 2g: Amice P. Blanco L. Conia JM. Synthesis  1976,  196 
  • 16g Compound 2h: Crossland I. Bock K. Norrestam R. Acta Chem. Scand., Ser. B  1985,  39:  7 
  • 16h Nield CH. J. Am. Chem. Soc.  1945,  67:  1145 
  • 16i Compound 2i: Carlier P. Gelas-Mialhe Y. Vessiere R. Can. J. Chem.  1977,  55:  3190 
  • 18 For stabilization involving lithium chelation in an eight-membered ring, see: Davis FA. Reddy RT. Reddy RE. J. Org. Chem.  1992,  57:  6387 
  • 19 Molander GA. Stengel PJ. Tetrahedron  1997,  53:  8887 
  • 20 Parker D. Chem. Rev.  1991,  91:  1441 
15

This compound is commercially available from Sigma-Aldrich Co (http://www.sigmaaldrich.com).

17

CCDC 741870 contains the crystallographic data which can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam. ac.uk, or by contacting CCDC, UK; fax: +44 (1223)336033.

21

Full coordinates and other information about the calculations can be found via the following digital repository entries: 10042/to-2308, 10042/to-23010, 10042/to-2311, 10042/to-2312, 10042/to-2314 and 10042/to-2315, resolved as e.g. http://dx.doi.org/10042/to-2308. An interactive version of this figure can be viewed via the HTML version of this article.

22

Typical Experimental Procedure for Aziridination
To a dry THF solution of 2-bromocyclohex-2-en-1-one (2a, 0.286 mmol), under nitrogen atmosphere and protected from light at -78 ˚C, was added the lithium salt of chiral sulfinamide 1 (0.858 mmol) and the reaction allowed to reach r.t. After 30 min the solvent was removed under reduced pressure and the residue dissolved in EtOAc, washed with aq NH4Cl (10%), and after drying and solvent removal, the remaining residue was purified via silica gel PTLC (EtOAc-n-hexane, 1:1) to afford a mixture of the title aziridines 3Aa (major)/3Ba (minor); yield 62%. Separation of both diastereomers was achieved by 2 × PTLC of the mixture.
Compound 3Aa(major): mp 70-71 ˚C (EtOAc-n-hexane); [α]D ²³ +64.6 (c 0.99, CHCl3).
Compound 3Ba(minor): mp 90-91 ˚C (EtOAc-n-hexane); [α]D ²³ +89.4 (c 1.44, CHCl3). ¹H NMR (400 MHz, CDCl3; 3Aa/3Ba = 77:23): δ = 7.60 (2 H, d, J = 8.2 Hz, minor), 7.55 (2 H, d, J = 8.2 Hz, major), 3.23 (1 H, d, J = 6.3 Hz, minor), 3.13 (1 H, d, J = 6.3 Hz, major), 3.06 (1 H, d, J = 6.3 Hz, major), 2.94 (1 H, d, J = 6.3 Hz, minor). MS (CI): m/z (%) = 249 (100) [M+]. Anal. Calcd for C13H15NO2S: C, 62.62; H, 6.06; N, 5.62. Found: C, 62.31; H, 6.34; N, 5.74.
Compound 3b: oil. ¹H NMR (400 MHz, CDCl3): δ = 7.59 (2 H, d, J = 8.1 Hz, minor), 7.55 (2 H, d, J = 8.1 Hz, major), 3.08 (1 H, d, J = 6.3 Hz, major), 2.94 (1 H, d, J = 6.4 Hz, minor), 2.85 (1 H, d, J = 6.4 Hz, minor), 2.77 (1 H, d, J = 6.3 Hz, major). HRMS: m/z calcd for C15H19NO2S: 277.11365; found: 277.11344. Anal. Calcd for C15H19NO2S: C, 64.95; H, 6.90; N, 5.05. Found: C, 65.27; H, 7.16; N, 4.95.
Compound 3c: mp 64-65 ˚C (EtOAc-n-hexane). ¹H NMR (400 MHz, CDCl3): δ = 3.79 (2 H, d, J = 5.4 Hz, minor), 3.64 (1 H, d, J = 5.6 Hz, major), 3.41 (1 H, d, J = 6.2 Hz, major), 3.30 (1 H, d, J = 6.2 Hz, minor). MS (EI): m/z (%) = (1.1) 402 [M + 1]+. Anal. Calcd for C25H23NO2S: C, 74.78; H, 5.77; N, 3.49. Found: C, 75.16; H, 5.74; N, 3.37.
Compound 3d (major): mp 97-98 ˚C (Et2O-n-hexane); [α]D ²³ +22.0 (c 0.90, CHCl3).
Compound 3d (minor): mp 105-106 ˚C (Et2O-n-hexane); [α]D ²³ +12.4 (c 2.03, CHCl3). ¹H NMR (400 MHz, CDCl3): δ = 7.62 (2 H, d, J = 8.2 Hz, minor), 7.54 (2 H, d, J = 8.2 Hz, major), 3.56 (1 H, m, minor), 3.53 (1 H, m, major), 3.11 (1 H, d, J = 4.3 Hz, major), 3.08 (1 H, d, J = 4.3 Hz, minor). HRMS-FAB: m/z calcd for C12H14NO2S: 236.074526; found: 236.075172.
Compound 3f: oil. ¹H NMR (400 MHz, CDCl3): δ = 7.60 (2 H, d, J = 7.8 Hz, minor), 7.54 (2 H, d, J = 7.8 Hz, major), 3.23 (1 H, d, J = 4.4 Hz, minor), 3.21 (1 H, d, J = 4.4 Hz, major), 3.13 (1 H, d, J = 4.4 Hz, major), 3.10 (1 H, d, J = 4.4 Hz, minor). MS (FI): m/z (%) =(100) 263 [M+]. Anal. Calcd for C14H17NO2S: C, 63.85; H, 6.51; N, 5.32. Found: C, 62.95; H, 6.81; N, 5.17.
Compound 3g: mp 92-93 ˚C (Et2O-n-pentane). ¹H NMR (400 MHz, CDCl3): δ = 7.61 (2 H, d, J = 8.1 Hz, minor), 7.56 (2 H, d, J = 8.1 Hz, major), 3.13 (1 H, J = 7.7, 1.5 Hz, major), 3.06 (1 H, m, minor), 2.97 (1 H, dd, J = 7.7, 4.6 Hz, major), 2.80 (1 H, m, minor). MS (EI): m/z (%) =(18) 263 [M+]. Anal. Calcd for C14H17NO2S: C, 63.85; H, 6.51; N, 5.32. Found: C, 62.62; H, 6.72; N, 5.29.
Compound 3h: diasteriomeric mixture (1:1), mp 69-71 ˚C, 77-80 ˚C (EtOAc). ¹H NMR (400 MHz, CDCl3): δ = 2.81
(1 H, d, J = 4.1 Hz), 2.79 (1 H, d, J = 7.3 Hz), 2.71 (1 H, d, J = 6.9 Hz), 2.24 (1 H, d, J = 3.7 Hz). HRMS (EI): m/z calcd for C16H15NO2S: 285.08235; found: 285.083598. Anal. Calcd for C16H15NO2S: C, 67.34; H, 5.30; N, 4.91. Found: C, 67.34; H, 5.30; N, 4.91.
Compounds 3i: 3Ai: mp 103-105 ˚C (EtOAc); [α]D ²³ -15.1 (c 3.30, CHCl3). ¹H NMR (400 MHz, CDCl3): δ = 3.91 (1 H, dd, J = 6.5, 3.3 Hz), 2.89 (1 H, d, J = 3.3 Hz), 2.66 (1 H, d, J = 6.5 Hz). Anal. Calcd for C15H15NO3S2: C, 56.05; H, 4.70; N, 4.36. Found: C, 55.87; H, 4.76; N, 4.38. 3Bi: mp 120-121 ˚C (EtOAc); [α]D ²³ +7.4 (c 2.04, CHCl3). ¹H NMR (400 MHz, CDCl3): δ = 3.70 (1 H, dd, J = 6.3, 3.2 Hz), 2.75 (1 H, d, J = 6.3 Hz), 2.43 (1 H, br d); the attribution to 3Ai and 3Bi may be reversed. HRMS (EI): m/z calcd for C15H15NO3S2: 321.04933; found: 321.04958.
Oxidation of 3Aa/3Ba
To a solution of 3Aa/3Ba (0.2 mmol) was added MCPBA (0.4 mmol), and after 18 h at r.t. the solvent was removed and the enantiomeric mixture of 4Aa/4Ba isolated (yield 99%); ee 53% from ¹H NMR (400 MHz, CDCl3): δ = 3.45 (1 H, H2) split by addition of Eu(hfc)3.