Subscribe to RSS
DOI: 10.1055/s-0029-1218602
A Highly Versatile Octasubstituted Phthalocyanine Scaffold for ex post Chemical Diversification
Publication History
Publication Date:
11 December 2009 (online)
Abstract
The TBDPS protecting group was conveniently employed for the convergent synthesis of a highly soluble, fully protected octa-peripheral (op) substituted phthalocyanine (Pc). After facile deprotection, ex post modification of this full-fledged Pc scaffold by various linkers was successfully achieved. This strategy overcomes the downsides of widely established linear convergent approaches under harsh conditions, which are not only destructive to chemically sensitive substituents, but also detrimental to rapid diversification towards Pc libraries.
Key words
heterocycles - dendrimers - protecting groups - phthalocyanine - ex post diversification - divergent strategy
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Lee H,Jung J,Deno T, andOhwa M. inventors; WO 2008,095,801. ; Chem. Abstr. 2008, 149, 269526 -
1b
Metz T, andSchaefer W. inventors; DE 102,007,033,191. ; Chem. Abstr. 2009, 150, 170268 -
2a
Emmelius M.Pawlowski G.Vollmann HW. Angew. Chem., Int. Ed. Engl. 1989, 28: 1445 -
2b
Roth K. Chem. Unserer Zeit 2007, 41: 334 -
3a
McKeown NB. Phthalocyanine Materials: Synthesis, Structure and Function Vol. 6: Cambridge University Press; Cambridge UK: 1998. -
3b
Leznoff CC.Lever ABP. Phthalocyanines: Properties and Applications Vol. 1-4: VCH; New York: 1989-1996. - 4
Juríček M.Kouwer PHJ.Rehák J.Sly J.Rowan AE. J. Org. Chem. 2009, 74: 21 -
5a
Savage PB.Gellman SH. J. Am. Chem. Soc. 1993, 115: 10448 -
5b
Corey EJ.Venkateswarlu A. J. Am. Chem. Soc. 1972, 94: 6190 -
5c
Farooq O. Synthesis 1994, 1035 -
5d
McKillop A.Kemp D. Tetrahedron 1989, 45: 3299 -
5e
Woehrle D.Eskes M.Shigehara K.Yamada A. Synthesis 1993, 194 - 6
Overman LE.Okazaki ME.Mishra P. Tetrahedron Lett. 1986, 27: 4391 - 7
Uchida H.Yoshiyama H.Reddy PY.Nakamura S.Toru T. Synlett 2003, 2083 -
8a
Liu W.Jensen TJ.Fronczek FR.Hammer RP.Smith KM.Vicente MGH. J. Med. Chem. 2005, 48: 1033 -
8b
Kobayashi T.Uyeda N.Suito E. J. Phys. Chem. 1968, 72: 2446 -
8c
Stillman MJ.Thomson AJ. J. Chem. Soc., Faraday Trans. 2 1974, 805 - 9
Hassan BM.Li H.McKeown NB. J. Mater. Chem. 2000, 10: 39 - 10
Wang H.Sun L.Glazebnik S.Zhao K. Tetrahedron Lett. 1995, 36: 2953 - 11
Bock VD.Hiemstra H.Maarseveen JH. Eur. J. Org. Chem. 2006, 51 -
12a
Bertozzi CR,Agard NJ,Prescher JA,Baskin JM, andSletten EM. inventors; US 2009,068,738. ; Chem. Abstr. 2009, 150, 330128 -
12b
Sletten EM.Bertozzi CR. Org. Lett. 2008, 10: 3097 -
14a
Plusquellec D.Lefeuvre M. Tetrahedron Lett. 1987, 28: 4165 -
14b
Lin TS.Antonini I.Cosby LA.Sartorelli AC. J. Med. Chem. 1984, 27: 813 -
14c
Duggan ME.Imagire JS. Synthesis 1989, 131
References
Alternatively, the axial ligand of 12 might be interpreted as H2O. However, there are two indications that the axial ligand is NH3: 1. The distance is in accordance with a typical Zn-N bond in such compounds, 2. calculation of both structural models resulted in the smaller R value for NH3.