Subscribe to RSS
DOI: 10.1055/s-0029-1218828
Synthesis of a Carbohydrate-Derived 1-Oxaspiro[4.4]nonane Skeleton and Its Conversion into Spironucleosides
Publication History
Publication Date:
17 June 2010 (online)
Abstract
An easy entry to the 1-oxaspiro[4.4]nonane skeleton has been developed starting from a d-glucose-derived substrate. The key steps involve (a) installation of olefin moieties at the appropriate places through simple transformations and (b) construction of spiro rings by utilizing ring-closing metathesis reactions between these olefin functionalities. Subsequent deprotection of the acetonide functionality, peracetylation, nucleosidaton under Vorbrüggen reaction conditions, and final deprotections result in the formation of the spironucleosides. The involvement of an interesting intra/intermolecular acetyl migration has been used to rationalize the product distribution during desilylation. Various 1D and 2D NMR techniques and X-ray analyses of some important intermediates were used for assigning the structures and stereochemistry of the products.
Key words
alkenes - spiro compounds - ring-closing metathesis - nucleosides - carbohydrates
- 1
Nakajima M.Itoi K.Takamatsu Y.Kinoshita T.Okazaki T.Kawakubo K.Shindo M.Honma T.Tohjigamori M.Haneishi T. J. Antibiot. 1991, 44: 293 -
2a
Balzarini J.Pérez-Pérez M.-J.San-Félix A.Schols D.Perno C.-F.Vandamme A.-M.Camarasa M.-J.De Clercq E. Proc. Natl. Acad. Sci. U.S.A. 1992, 89: 4392 -
2b
De Castro S.Lobatón E.Pérez-Pérez M.-J.San-Félix A.Cordeiro A.Andrei G.Snoeck R.De Clercq E.Balzarini J.Camarasa M.-J.Velázquez S. J. Med. Chem. 2005, 48: 1158 - 3
Kittaka A.Asakura T.Kuze T.Tanaka H.Yamada N.Nakamura KT.Miyasaka T. J. Org. Chem. 1999, 64: 7081 ; and references cited therein -
4a
Gimisis T.Chatgilialoglu C. J. Org. Chem. 1996, 61: 1908 -
4b
Chatgilialoglu C.Gimisis T.Spada GP. Chem. Eur. J. 1999, 5: 2866 -
4c
Gasch C.Pradera MA.Salameh BAB.Molina JL.Fuentes J. Tetrahedron: Asymmetry 2001, 12: 1267 - 5
Saenger W. Principles of Nucleic Acid Structures Springer; New York: 1984. p.51-104 - 6
Altona C.Sunderalingam M. J. Am. Chem. Soc. 1972, 94: 8205 -
7a
Shin KJ.Moon HR.Georgen C.Marquez VE. J. Org. Chem. 2000, 65: 2172 -
7b
Russ P.Schelling P.Scapozza L.Folkers G.De Clercq E.Marquez VE.
J. Med. Chem. 2003, 46: 5045 -
8a
Paquette LA. Aust. J. Chem. 2004, 57: 7 ; and references cited therein -
8b
Hartung RE.Paquette LA. Heterocycles 2006, 67: 75 -
8c
Dong S.Paquette LA. J. Org. Chem. 2006, 71: 1647 - 9
Singha K.Roy A.Dutta PK.Tripathi S.Sahabuddin Sk.Achari B.Mandal SB. J. Org. Chem. 2004, 69: 6507 - 10
Astarita A.Cermola F.Iesce MR.Previtera L. Tetrahedron 2008, 64: 6744 -
11a
Brimble MA.Robinson JE.Choi KW.Woodgate PD. Aust. J. Chem. 2004, 57: 665 -
11b
Choi KW.Brimble MA. Org. Biomol. Chem. 2009, 7: 1424 - 12
Lin W.Gupta A.Kim KH.Mendel D.Miller MJ. Org. Lett. 2009, 11: 449 - 13
Haruama H.Takayama T.Kinoshita T.Kondo M.Nakajima M.Haneishi T. J. Chem. Soc., Perkin Trans. 1 1991, 1637 - 14
Ravindra Babu B.Keinicke L.Petersen M.Nielsen C.Wengel J. Org. Biomol. Chem. 2003, 1: 3514 - 15
Nielsen P.Larsen K.Wengel J. Acta Chem. Scand. 1996, 50: 1030 -
16a
Roy A.Achari B.Mandal SB. Tetrahedron Lett. 2006, 47: 3875 -
16b
Tripathi S.Roy BG.Drew MGB.Achari B.Mandal SB. J. Org. Chem. 2007, 72: 7427 -
16c
Maity JK.Ghosh R.Drew MGB.Achari B.Mandal SB. J. Org. Chem. 2008, 73: 4305 - 17
Wendeborn S.Binot G.Nina M.Winkler T. Synlett 2002, 1683 - 18
Paquette LA.Lanter JC.Johnston JN. J. Org. Chem. 1997, 62: 1702 ; and references cited therein - 19
Ghosh R.Maity JK.Drew MGB.Achari B.Mandal SB. Synthesis 2010, 1303 - 20
Vorbrüggen H.Krolikiewicz K.Bennua B. Chem. Ber. 1981, 114: 1234 -
22a
CrysAlis
Oxford Diffraction
Ltd.;
Abingdon, UK:
2006.
-
22b
Sheldrick GM. Acta Crystallogr., Sect. A 2008, 64: 112
References
CCDC 745578 (for 18) and CCDC 745579 (for 29) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.