Synlett 2010(3): 403-406  
DOI: 10.1055/s-0029-1219176
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Efficient and Atom-Economic Synthesis of α-Substituted β-Chromonyl-α,β-unsaturated Carbonyls through Molecular Rearrangement

Vivek Khedkara, Wei Liua,b, Heiko Dückerta,b, Kamal Kumar*a
a Max Planck Institut für Molekulare Physiologie, Otto-Hahn Str. 11, 44227 Dortmund, Germany
Fax: +49(231)1332496; e-Mail: Kamal.Kumar@mpi-dortmund.mpg.de;
b Technische Universität Dortmund, Fachbereich Chemie, 44221 Dortmund, Germany
Further Information

Publication History

Received 23 October 2009
Publication Date:
07 January 2010 (online)

Abstract

Under mild acidic conditions [4+2] cycloadducts of 3-formylchromones and acetylenecarboxylates rearrange to yield α-substituted-β-chromonyl-α,β-unsaturated carbonyl compounds in excellent yields.

    References and Notes

  • 1a Veitch NG. Grayer RJ. Nat. Prod. Rep.  2008,  25:  555 
  • 1b Harborne JB. Williams CA. Nat. Prod. Rep.  1995,  12:  639 
  • 1c Harborne JB. Williams CA. Nat. Prod. Rep.  1998,  15:  631 
  • 1d Harborne JB. Williams CA. Nat. Prod. Rep.  2001,  18:  310 
  • 1e Williams CA. Grayer RJ. Nat. Prod. Rep.  2004,  21:  539 
  • 1f Ferreira D. Slade D. Marais JPJ. In Flavonoids: Chemistry, Biochemistry and Applications   Andersen OM. Markham KR. CRC Press; Boca Raton: 2006.  p.553-616  
  • 1g Veitch NC. Nat. Prod. Rep.  2007,  24:  417 
  • 1h Reynaud J. Guilet D. Terreux R. Lussignol M. Walchshofer N. Nat. Prod. Rep.  2005,  22:  504 
  • 1i Mackova Z. Koblovska R. Lapcik O. Phytochemistry  2006,  67:  849 
  • 1j Flavonoids: Chemistry, Biochemistry and Applications   Andersen OM. Markham KR. CRC Press; Boca Raton: 2006. 
  • 1k The Flavonoids: Advances in Research since 1986   Harborne JB. Chapman and Hall; London: 1994. 
  • 1l The Science of Flavonoids   Grotewold E. Springer; New York / London: 2006. 
  • 1m Maurya R. Yadav PP. Nat. Prod. Rep.  2005,  22:  400 
  • Selected reports:
  • 2a Dahlen K. Wallen EAA. Grotli M. Luthman K. J. Org. Chem.  2006,  71:  6863 
  • 2b Bhat AS. Whetstone JL. Brueggemeier RW. J. Comb. Chem.  2000,  2:  597 
  • 2c Patil NT. Huo Z. Yamamoto Y. Tetrahedron  2007,  63:  5954 
  • 3a Sabitha G. Aldrichimica Acta  1996,  29:  15 
  • 3b Ghosh CK. Patra A. J. Heterocycl. Chem.  2008,  45:  1529 
  • 4a Khan KM. Ambreen N. Hussain S. Perveen SI. Choudhary M. Bioorg. Med. Chem.  2009,  17:  2983 
  • 4b Sersen F. Loos D. Mezesova L. Lacova M. Med. Chem.  2008,  4:  355 
  • 4c Shihara M. Sakagami H. Anticancer Res.  2008,  28:  277 
  • 4d Dang A. Miller DO. Dawe LN. Bodwell GJ. Org. Lett.  2008,  10:  233 
  • 4e Kawase M. Tanaka T. Kan H. Tani S. Nakashima H. Sakagami H. In Vivo  2007,  21:  829 
  • 4f Barath Z. Radics R. Spengler G. Ocsovszki I. Kawase M. Motohashi N. Shirataki Y. Shah A. Molnar J. In Vivo  2006,  20:  645 
  • 5a Waldmann H. Khedkar V. Dückert H. Schürmann M. Oppel IM. Kumar K. Angew. Chem. Int. Ed.  2008,  47:  6869 
  • 5b Terzidis MA. Dimitriadou E. Tsoleridis CA. Stephanidou-Stephanatou J. Tetrahedron Lett.  2009,  50:  2174 
  • 10a Ishar MPS. Kumar K. Singh R. Tetrahedron Lett.  1998,  39:  6547 
  • 10b Ishar MPS. Singh G. Kumar K. Singh R. Tetrahedron  2000,  56:  7817 
  • 12 Neo AG. Carrillo RM. Barriga S. Momán E. Marcaccini S. Marcos CF. Synlett  2007,  327 
  • 14 Waldmann H. Kühn M. Liu W. Kumar K. Chem. Commun.  2008,  1211 
6

General Procedure for the Rearrangement of the Adducts 3 to 4
TFA (1 mL in 5 mL CH2Cl2) was added slowly dropwise to the CH2Cl2 solution (5 mL) of the tricyclic benzopyrones 3 (1 mmol). The reaction mixture was stirred at r.t. for 30 min under argon. The reaction was monitored by TLC using cyclohexane-EtOAc (7:3) as eluent. After evaporation of the solvent, the crude product was purified by column chroma-tography on silica gel with cyclohexane-EtOAc as the eluent.

7

Spectroscopic Data for the Ketoester 4a Yellow solid; mp 177-178 ˚C; R f  = 0.33 (cyclohexane-EtOAc, 6:4). ¹H NMR (400 MHz, CDCl3): δ = 8.32 (d, J = 0.7 Hz, 1 H), 8.21-8.19 (dd, J = 1.6, 8.0 Hz, 1 H), 7.63 (td, J = 1.6, 7.8 Hz, 1 H), 7.50 (d, J = 0.7 Hz, 1 H), 7.49-7.47 (dd, J = 1.0, 7.4 Hz, 1 H), 7.43 (td, J = 1.0, 7.4 Hz, 1 H), 3.98 (s, 3 H), 3.82 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 180.8, 174.0, 164.8, 161.1, 159.6, 155.7, 134.6, 132.9, 131.6, 126.7, 126.2, 123.3, 118.3, 118.0, 53.1, 52.6. ESI-HRMS: m/z calcd for C16H13O7 [M + H+]: 317.06558; found: 317.06568.

8

Spectroscopic Data for the Aldehyde 4h
Yellow solid; mp 120-122 ˚C; R f = 0.39 (cyclohexane-EtOAc, 6:4). ¹H NMR (400 MHz, CDCl3): δ = 9.71 (s, 1 H, CHO), 8.66 (d, J = 0.8 Hz, 1 H), 8.28-8.24 (m, 2 H), 7.73 (d, J = 0.8 Hz, 1 H), 7.52-7.44 (m, 2 H), 3.89 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 189.3, 174.8, 165.6, 158.4, 155.8, 140.8, 134.5, 133.8, 126.4, 126.3, 123.6, 118.4, 118.3, 52.6. ESI-HRMS: m/z calcd for C14H11O5 [M + H+]: 259.06010; found: 259.06017.

9

Spectroscopic Data for the Phenyl Ketone 4o
Yellow solid; mp 171-173 ˚C; R f = 0.45 (cyclohexane-EtOAc, 6:4). ¹H NMR (400 MHz, CDCl3): δ = 8.18-8.16 (dd, J = 1.3, 8.4 Hz, 1 H), 8.15 (d, J = 1.0 Hz, 1 H), 8.05 (d, J = 1.0 Hz, 1 H), 7.93-7.91 (dd, J = 1.3, 8.4 Hz, 1 H), 7.63 (td, J = 7.8 Hz, 1 H), 7.55-7.35 (m, 5 H), 7.28-7.25 (m, 1 H), 4.25-4.19 (q, J = 7.1 Hz, 2 H), 1.17 (t, J = 7.1 Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 194.5, 175.2, 164.3, 156.2, 155.8, 140.6, 136.1, 134.1, 133.8, 132.9, 129.8, 129.0, 128.7, 128.5, 126.1, 125,7, 123.5, 119.0, 118.1, 61.5, 13.9. ESI-HRMS: m/z calcd for C21H17O5 [M + H+]: 349.10705; found: 349.10719.

11

The authors appreciate the comments from one of the referees regarding the mechanistic postulations.

13

An alternative synthesis of 4 by a Wittig olefination of 3-formylchromone would require the corresponding ketoester or aldehydic phosphoranes which are not commercially available and require multistep synthesis and also remain susceptible to self-olefination and polymerization reaction. The same is true for the alternative aldol condensation strategy to provide 4 by reacting chromone aldehydes with ketoester 7. Using our previously reported methodology¹4 to condense 1,3-dicarbonyls with 3-formylchromone, we could observe self-condensation products of 7 but not any formation of 4a (Scheme  [4] ).

Scheme 4