Semin Thromb Hemost 2009; 35(4): 367-381
DOI: 10.1055/s-0029-1225759
© Thieme Medical Publishers

Congenital Prothrombin Deficiency

Stefano Lancellotti1 , Raimondo De Cristofaro1
  • 1Haemostasis Research Center, Department of Internal Medicine, Catholic University School of Medicine, Rome, Italy
Further Information

Publication History

Publication Date:
13 July 2009 (online)

ABSTRACT

Prothrombin deficiency is among the rarest inherited coagulation disorders, with a prevalence of ~1:2,000,000. Two main phenotypes can be distinguished: (1) hypoprothrombinemia (type I deficiency), characterized by concomitantly low levels of activity and antigen; and (2) dysprothrombinemia (type II deficiency), characterized by the normal or near-normal synthesis of a dysfunctional protein. In some cases, hypoprothrombinemia associated with dysprothrombinemia was also described in compound heterozygous defects. No living patient with undetectable plasma prothrombin has been reported to date. Prothrombin is encoded by a gene of ~21 kb located on chromosome 11 and containing 14 exons. Forty different mutations have been identified and characterized in prothrombin deficiency. Many of them surround the catalytic site, whereas another “hot spot” is localized in the recognition domain called anion binding exosite I, also called fibrinogen recognition site. Recently, mutations were identified also in the Na+-binding loop and in the light A-chain of thrombin. Most hypoprothrombinemia-associated mutations are missense, but there are also nonsense mutations leading to stop codons and one single nucleotide deletion. Finally, the main aspects of clinical manifestations and therapy of congenital prothrombin deficiency are presented and discussed.

REFERENCES

  • 1 Barnhart M I. Cellular site for prothrombin synthesis.  Am J Physiol. 1960;  199 360-366
  • 2 Esmon C T. Regulation of blood coagulation.  Biochim Biophys Acta. 2000;  1477 349-360
  • 3 Mosesson M W. Fibrinogen and fibrin structure and functions.  J Thromb Haemost. 2005;  3 1894-1904
  • 4 Segers K, Dahlbäck B, Bock P E, Tans G, Rosing J, Nicolaes G A. The role of thrombin exosites I and II in the activation of human coagulation factor V.  J Biol Chem. 2007;  282 33915-33924
  • 5 Myles T, Yun T H, Leung L L. Structural requirements for the activation of human factor VIII by thrombin.  Blood. 2002;  100 2820-2826
  • 6 Isetti G, Maurer M C. Employing mutants to study thrombin residues responsible for factor XIII activation peptide recognition: a kinetic study.  Biochemistry. 2007;  46 2444-2452
  • 7 Bar-Shavit R, Kahn A J, Mann K G, Wilner G D. Identification of a thrombin sequence with growth factor activity on macrophages.  Proc Natl Acad Sci U S A. 1986;  83 976-980
  • 8 Zetter B R, Antoniades H N. Stimulation of human vascular endothelial cell growth by a platelet-derived growth factor and thrombin.  J Supramol Struct. 1979;  11 361-370
  • 9 Seino Y, Ikeda U, Ikeda M et al.. Interleukin 6 gene transcripts are expressed in human atherosclerotic lesions.  Cytokine. 1994;  6 87-91
  • 10 Fenton II J W. Regulation of thrombin generation and functions.  Semin Thromb Hemost. 1988;  14 234-240
  • 11 Hu L, Roth J M, Brooks P, Luty J, Karpatkin S. Thrombin up-regulates cathepsin D which enhances angiogenesis, growth, and metastasis.  Cancer Res. 2008;  68 4666-4673
  • 12 Degen S J, Davie E W. Nucleotide sequence of the gene for human prothrombin.  Biochemistry. 1987;  26 6165-6177
  • 13 Royle N J, Irwin D M, Koschinsky M L, MacGillivray R T, Hamerton J L. Human genes encoding prothrombin and ceruloplasmin map to 11p11-q12 and 3q21-24, respectively.  Somat Cell Mol Genet. 1987;  13 285-292
  • 14 Stanchev H, Philips M, Villoutreix B O, Aksglaede L, Lethagen S, Thorsen S. Prothrombin deficiency caused by compound heterozygosity for two novel mutations in the prothrombin gene associated with a bleeding tendency.  Thromb Haemost. 2006;  95 195-198
  • 15 Akhavan S, Mannucci P M, Lak M et al.. Identification and three-dimensional structural analysis of nine novel mutations in patients with prothrombin deficiency.  Thromb Haemost. 2000;  84 989-997
  • 16 Peyvandi F, Duga S, Akhavan S, Mannucci P M. Rare coagulation deficiencies.  Haemophilia. 2002;  8 308-321
  • 17 Mannucci P M, Duga S, Peyvandi F. Recessively inherited coagulation disorders.  Blood. 2004;  104 1243-1252
  • 18 Acharya S S, Coughlin A, Dimichele D M. North American Rare Bleeding Disorder Study Group . Rare Bleeding Disorder Registry: deficiencies of factors II, V, VII, X, XIII, fibrinogen and dysfibrinogenemias.  J Thromb Haemost. 2004;  2 248-256
  • 19 Girolami A, Scarano L, Saggiorato G, Girolami B, Bertomoro A, Marchiori A. Congenital deficiencies and abnormalities of prothrombin.  Blood Coagul Fibrinolysis. 1998;  9 557-569
  • 20 Klaus C, Plaimauer B, Studt J D et al.. Epitope mapping of ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic purpura.  Blood. 2004;  103 4514-4519
  • 21 Peyvandi F, Cattaneo M, Inbal A, De Moerloose P, Spreafico M. Rare bleeding disorders.  Haemophilia. 2008;  14(Suppl 3) 202-210
  • 22 Sun W Y, Witte D P, Degen J L et al.. Prothrombin deficiency results in embryonic and neonatal lethality in mice.  Proc Natl Acad Sci U S A. 1998;  95 7597-7602
  • 23 Xue J, Wu Q, Westfield L A et al.. Incomplete embryonic lethality and fatal neonatal hemorrhage caused by prothrombin deficiency in mice.  Proc Natl Acad Sci U S A. 1998;  95 7603-7607
  • 24 Iwahana H, Yoshimoto K, Shigekiyo T, Shirakami A, Saito S, Itakura M. Molecular and genetic analysis of a compound heterozygote for dysprothrombinemia of prothrombin Tokushima and hypoprothrombinemia.  Am J Hum Genet. 1992;  51 1386-1395
  • 25 Wang W, Fu Q, Zhou R et al.. Prothrombin Shanghai: hypoprothrombinaemia caused by substitution of Gla29 by Gly.  Haemophilia. 2004;  10 94-97
  • 26 Shapiro S S, McCord S. Prothrombin.  Prog Hemost Thromb. 1978;  4 177-209
  • 27 Lanchantin G F, Hart D W, Friedmann J A, Saavedra N V, Mehl J W. Amino acid composition of human plasma prothrombin.  J Biol Chem. 1968;  243 5479-5485
  • 28 Neurath H. Evolution of proteolytic enzymes.  Science. 1984;  224 350-357
  • 29 Gilbert W. Genes-in-pieces revisited.  Science. 1985;  228 823-824
  • 30 Patthy L. Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules.  Cell. 1985;  41 657-663
  • 31 Bányai L, Váradi A, Patthy L. Common evolutionary origin of the fibrin-binding structures of fibronectin and tissue-type plasminogen activator.  FEBS Lett. 1983;  163 37-41
  • 32 Bode W, Turk D, Karshikov A. The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships.  Protein Sci. 1992;  1 426-471
  • 33 Hageman T C, Endres G F, Scheraga H A. Mechanism of action of thrombin on fibrinogen. On the role of the A chain of bovine thrombin in specificity and in differentiating between thrombin and trypsin.  Arch Biochem Biophys. 1975;  171 327-336
  • 34 DiBella E E, Maurer M C, Scheraga H A. Expression and folding of recombinant bovine prethrombin-2 and its activation to thrombin.  J Biol Chem. 1995;  270 163-169
  • 35 Akhavan S, Rocha E, Zeinali S, Mannucci P M. Gly319 —> arg substitution in the dysfunctional prothrombin Segovia.  Br J Haematol. 1999;  105 667-669
  • 36 Lefkowitz J B, Haver T, Clarke S et al.. The prothrombin Denver patient has two different prothrombin point mutations resulting in Glu-300—> Lys and Glu-309—> Lys substitutions.  Br J Haematol. 2000;  108 182-187
  • 37 Sun W Y, Burkart M C, Holahan J R, Degen S J. Prothrombin San Antonio: a single amino acid substitution at a factor Xa activation site (Arg320 to His) results in dysprothrombinemia.  Blood. 2000;  95 711-714
  • 38 Wells C M, Di Cera E. Thrombin is a Na(+)-activated enzyme.  Biochemistry. 1992;  31 11721-11730
  • 39 Di Cera E, Dang Q D, Ayala Y M. Molecular mechanisms of thrombin function.  Cell Mol Life Sci. 1997;  53 701-730
  • 40 Rose T, Di Cera E. Three-dimensional modeling of thrombin-fibrinogen interaction.  J Biol Chem. 2002;  277 18875-18880
  • 41 Pechik I, Madrazo J, Mosesson M W, Hernandez I, Gilliland G L, Medved L. Crystal structure of the complex between thrombin and the central “E” region of fibrin.  Proc Natl Acad Sci U S A. 2004;  101 2718-2723
  • 42 Mathews I I, Padmanabhan K P, Ganesh V et al.. Crystallographic structures of thrombin complexed with thrombin receptor peptides: existence of expected and novel binding modes.  Biochemistry. 1994;  33 3266-3279
  • 43 Esmon C T, Lollar P. Involvement of thrombin anion-binding exosites 1 and 2 in the activation of factor V and factor VIII.  J Biol Chem. 1996;  271 13882-13887
  • 44 Fuentes-Prior P, Iwanaga Y, Huber R et al.. Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex.  Nature. 2000;  404 518-525
  • 45 Sheehan J P, Wu Q, Tollefsen D M, Sadler J E. Mutagenesis of thrombin selectively modulates inhibition by serpins heparin cofactor II and antithrombin III. Interaction with the anion-binding exosite determines heparin cofactor II specificity.  J Biol Chem. 1993;  268 3639-3645
  • 46 Stone S R, Braun P J, Hofsteenge J. Identification of regions of alpha-thrombin involved in its interaction with hirudin.  Biochemistry. 1987;  26 4617-4624
  • 47 Akhavan S, De Cristofaro R, Peyvandi F, Lavoretano S, Landolfi R, Mannucci P M. Molecular and functional characterization of a natural homozygous Arg67His mutation in the prothrombin gene of a patient with a severe procoagulant defect contrasting with a mild hemorrhagic phenotype.  Blood. 2002;  100 1347-1353
  • 48 Masci P P, Whitaker A N, de Jersey J. Purification and characterization of a prothrombin activator from the venom of the Australian brown snake, Pseudonaja textilis textilis.  Biochem Int. 1988;  17 825-835
  • 49 Van Creveld S. Congenital idiopathic hypoprothrombinemia.  Acta Paediatr Suppl. 1954;  43 245-255
  • 50 Huntington J A. Molecular recognition mechanisms of thrombin.  J Thromb Haemost. 2005;  3 1861-1872
  • 51 De Cristofaro R, Akhavan S, Altomare C, Carotti A, Peyvandi F, Mannucci P M. A natural prothrombin mutant reveals an unexpected influence of A-chain structure on the activity of human alpha-thrombin.  J Biol Chem. 2004;  279 13035-13043
  • 52 De Cristofaro R, Carotti A, Akhavan S et al.. The natural mutation by deletion of Lys9 in the thrombin A-chain affects the pKa value of catalytic residues, the overall enzyme's stability and conformational transitions linked to Na + binding.  FEBS J. 2006;  273 159-169
  • 53 François D, Chevreaud C, Vignon D, de Mazancourt P. Prothrombin Suresnes: a case of homozygous F299V mutation responsible for hypodysprothrombinemia.  Haematologica. 2006;  91 431-432
  • 54 Liu C C, Brustad E, Liu W, Schultz P G. Crystal structure of a biosynthetic sulfo-hirudin complexed to thrombin.  J Am Chem Soc. 2007;  129 10648-10649
  • 55 O'Marcaigh A S, Nichols W L, Hassinger N L et al.. Genetic analysis and functional characterization of prothrombins Corpus Christi (Arg382-Cys), Dhahran (Arg271-His), and hypoprothrombinemia.  Blood. 1996;  88 2611-2618
  • 56 Miyata T, Zheng Y Z, Kato A, Kato H. A point mutation (Arg271—> Cys) of a homozygote for dysfunctional prothrombin, prothrombin Obihiro, which has a region of high sequence variability.  Br J Haematol. 1995;  90 688-692
  • 57 Lechler E. Use of prothrombin complex concentrates for prophylaxis and treatment of bleeding episodes in patients with hereditary deficiency of prothrombin, factor VII, factor X, protein C protein S, or protein Z.  Thromb Res. 1999;  95(4, Suppl 1) S39-S50
  • 58 Owen Jr C A, Henriksen R A, McDuffie F C, Mann K G. Prothrombin Quick. A newly identified dysprothrombinemia.  Mayo Clin Proc. 1978;  53 29-33
  • 59 Gill F M, Shapiro S S, Schwartz E. Severe congenital hypoprothrombinemia.  J Pediatr. 1978;  93 264-266
  • 60 Pabinger I, Brenner B, Kalina U, Knaub S, Nagy A, Ostermann H. Beriplex P/N Anticoagulation Reversal Study Group . Prothrombin complex concentrate (Beriplex P/N) for emergency anticoagulation reversal: a prospective multinational clinical trial.  J Thromb Haemost. 2008;  6 622-631
  • 61 Poort S R, Landolfi R, Bertina R M. Compound heterozygosity for two novel missense mutations in the prothrombin gene in a patient with a severe bleeding tendency.  Thromb Haemost. 1997;  77 610-615
  • 62 Marchiori A, Mosena L, Prins M H, Prandoni P. The risk of recurrent venous thromboembolism among heterozygous carriers of factor V Leiden or prothrombin G20210A mutation. A systematic review of prospective studies.  Haematologica. 2007;  92 1107-1114
  • 63 Girolami A, Santarossa L, Scarparo P, Candeo N, Girolami B. True congenital prothrombin deficiency due to a ‘new’ mutation in the pre-propeptide (ARG-39 GLN).  Acta Haematol. 2008;  120 82-86
  • 64 Wong A Y, Hewitt J, Clarke B J et al.. Severe prothrombin deficiency caused by prothrombin-Edmonton (R-4Q) combined with a previously undetected deletion.  J Thromb Haemost. 2006;  4 2623-2628
  • 65 Strijks E, Poort S R, Renier W O, Gabreëls F J, Bertina R M. Hereditary prothrombin deficiency presenting as intracranial haematoma in infancy.  Neuropediatrics. 1999;  30 320-324
  • 66 Poort S R, Michiels J J, Reitsma P H, Bertina R M. Homozygosity for a novel missense mutation in the prothrombin gene causing a severe bleeding disorder.  Thromb Haemost. 1994;  72 819-824
  • 67 Sun W Y, Ruiz-Saez A, Burkart M C, Bosch N, Degen S J. Prothrombin carora: hypoprothrombinaemia caused by substitution of Tyr-44 by Cys.  Br J Haematol. 1999;  105 670-672
  • 68 Board P G, Shaw D C. Determination of the amino acid substitution in human prothrombin type 3 (157 Glu leads to Lys) and the localization of a third thrombin cleavage site.  Br J Haematol. 1983;  54 245-254
  • 69 James H L, Kim D J, Zheng D Q, Girolami A. Prothrombin Padua I: incomplete activation due to an amino acid substitution at a factor Xa cleavage site.  Blood Coagul Fibrinolysis. 1994;  5 841-844
  • 70 Morishita E, Saito M, Kumabashiri I, Asakura H, Matsuda T, Yamaguchi K. Prothrombin Himi: a compound heterozygote for two dysfunctional prothrombin molecules (Met-337—> Thr and Arg-388—> His).  Blood. 1992;  80 2275-2280
  • 71 Tamary H, Surrey S, Augustine J, Shalmon L, Schwartz E, Rappaport E F. Molecular analysis of a compound heterozygote for hypoprothrombinemia and dysprothrombinemia (-G 7248/7249 and ARG 340 TRP).  Blood Coagul Fibrinolysis. 1997;  8 337-343
  • 72 Jayandharan G, Viswabandya A, Baidya S et al.. Molecular genetics of hereditary prothrombin deficiency in Indian patients: identification of a novel Ala362 —> Thr (Prothrombin Vellore 1) mutation.  J Thromb Haemost. 2005;  3 1446-1453
  • 73 Henriksen R A, Owen W G, Nesheim M E, Mann K G. Identification of a congenital dysthrombin, thrombin Quick.  J Clin Invest. 1980;  66 934-940
  • 74 Girolami A, Coccheri S, Palareti G, Poggi M, Burul A, Cappellato G. Prothrombin Molise: a “new” congenital dysprothrombinemia, double heterozygosis with an abnormal prothrombin and “true” prothrombin deficiency.  Blood. 1978;  52 115-125
  • 75 Iwahana H, Yoshimoto K, Shigekiyo T, Shirakami A, Saito S, Itakura M. Detection of a single base substitution of the gene for prothrombin Tokushima. The application of PCR-SSCP for the genetic and molecular analysis of dysprothrombinemia.  Int J Hematol. 1992;  55 93-100
  • 76 Lefkowitz J B, Weller A, Nuss R, Santiago-Borrero P J, Brown D L, Ortiz I R. A common mutation, Arg457—> Gln, links prothrombin deficiencies in the Puerto Rican population.  J Thromb Haemost. 2003;  1 2381-2388
  • 77 Kling S J, Jones K A, Rodgers G M. A second case of prothrombin Puerto Rico I in the United States.  Am J Hematol. 2007;  82 661-662
  • 78 Miyata T, Aruga R, Umeyama H, Bezeaud A, Guillin M C, Iwanaga S. Prothrombin Salakta: substitution of glutamic acid-466 by alanine reduces the fibrinogen clotting activity and the esterase activity.  Biochemistry. 1992;  31 7457-7462
  • 79 Henriksen R A, Dunham C K, Miller L D et al.. Prothrombin Greenville, Arg517—> Gln, identified in an individual heterozygous for dysprothrombinemia.  Blood. 1998;  91 2026-2031
  • 80 Sekine O, Sugo T, Ebisawa K et al.. Substitution of Gly-548 to Ala in the substrate binding pocket of prothrombin Perijá leads to the loss of thrombin proteolytic activity.  Thromb Haemost. 2002;  87 282-287
  • 81 Sun W Y, Smirnow D, Jenkins M L, Degen S J. Prothrombin Scranton: substitution of an amino acid residue involved in the binding of Na+ (LYS-556 to THR) leads to dysprothrombinemia.  Thromb Haemost. 2001;  85 651-654
  • 82 Henriksen R A, Mann K G. Substitution of valine for glycine-558 in the congenital dysthrombin thrombin Quick II alters primary substrate specificity.  Biochemistry. 1989;  28 2078-2082
  • 83 Poort S R, Njo K T, Vos H L, Bertina R M. Two novel mutations in the prothrombin gene cause severe bleeding in a compound heterozygous patient.  Blood Coagul Fibrinolysis. 1998;  9 761-764
  • 84 Shapiro S S, Martinez J, Holburn R R. Congenital dysprothrombinemia: an inherited structural disorder of human prothrombin.  J Clin Invest. 1969;  48 2251-2259
  • 85 Rocha E, Paramo J A, Bascones C, Fisac P R, Cuesta B, Fernandez J. Prothrombin Segovia: a new congenital abnormality of prothrombin.  Scand J Haematol. 1986;  36 444-449
  • 86 Josso F, Monasterio de Sanchez J, Lavergne J M, Menache D, Soulier J P. Congenital abnormality of the prothrombin molecule (factor II) in four siblings: prothrombin Barcelona.  Blood. 1971;  38 9-16
  • 87 Girolami A, Bareggi G, Brunetti A, Sticchi A. Prothrombin Padua: a “new” congenital dysprothrombinemia.  J Lab Clin Med. 1974;  84 654-666
  • 88 Weinger R S, Rudy C, Moake J L, Olson J D, Cimo P L. Prothrombin Houston: a dysprothrombin identifiable by crossed immunoelectrofocusing and abnormal Echis carinatus venom activation.  Blood. 1980;  55 811-816
  • 89 Smith L G, Coone L A, Kitchens C S. Prothrombin Gainesville. A dysprothrombinemia in a pair of identical twins.  Am J Hematol. 1981;  11 223-231
  • 90 Ruiz-Sáez A, Luengo J, Rodriguez A, Ojeda A, Gómez O, Acurero Z. Prothrombin Perija: a new congenital dysprothrombinemia in an Indian family.  Thromb Res. 1986;  44 587-598
  • 91 Huisse M G, Dreyfus M, Guillin M C. Prothrombin Clamart: prothrombin variant with defective Arg 320-IIe cleavage by factor Xa.  Thromb Res. 1986;  44 11-21
  • 92 Quick A J, Hussey C V. Hereditary hypoprothrombinaemias.  Lancet. 1962;  1 173-177
  • 93 Josso F, Rio Y, Béguin S. A new variant of human prothrombin: prothrombin Metz, demonstration in a family showing double heterozygosity for congenital hypoprothrombinemia and dysprothrombinemia.  Haemostasis. 1982;  12 309-316
  • 94 Bezeaud A, Drouet L, Soria C, Guillin M C. Prothrombin Salakta: an abnormal prothrombin characterized by a defect in the active site of thrombin.  Thromb Res. 1984;  34 507-518
  • 95 Kahn M J, Govaerts A. Prothrombin Brussels, a new congenital defective protein.  Thromb Res. 1974;  5 141-156
  • 96 Dumont M D, Tapon-Bretaudiere J, Fischer A M, Bros A, Chassevent J, Aufeuvre J P. Prothrombin Poissy: a new variant of human prothrombin.  Br J Haematol. 1987;  66 239-243
  • 97 Rubio R, Almagro D, Cruz A, Corral J F. Prothrombin Habana: a new dysfunctional molecule of human prothrombin associated with a true prothrombin deficiency.  Br J Haematol. 1983;  54 553-560
  • 98 Lutze G, Frick U, Töpfer G, Urbahn H. [Hereditary dysprothrombinemia with a mild bleeding tendency (prothrombin Magdeburg)].  Dtsch Med Wochenschr. 1989;  114 288-292

Prof. Raimondo De CristofaroM.D. 

Institute of Internal Medicine, Haemostasis Research Center, Catholic University School of Medicine

Largo F. Vito, 1, 00168 Roma, Italy

Email: rdecristofaro@rm.unicatt.it