Z Orthop Unfall 2010; 148(2): 168-173
DOI: 10.1055/s-0029-1240968
Hüftgelenk

© Georg Thieme Verlag KG Stuttgart · New York

Zementiertechnik in der Endoprothetik des Hüftgelenks: eine Übersicht

Cementing Techniques in Hip Arthroplasty: An OverviewA. Fottner1 , S. Utzschneider1 , F. Mazoochian1 , C. von Schulze Pellengahr2 , V. Jansson1
  • 1Orthopädische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, Campus Großhadern, München
  • 2Orthopädische Universitätsklinik im St. Josef Hospital, Kliniken der Ruhr-Universität Bochum
Further Information

Publication History

Publication Date:
07 April 2010 (online)

Zusammenfassung

Seit Jahrzehnten stellte die zementierte Verankerung von Hüftprothesen besonders für ältere Patienten das Standardverfahren dar. Die Zementiertechnik hat sich hierbei als der entscheidende Faktor für die Standzeit des Implantats erwiesen. In den letzten Jahren konnten Weiterentwicklungen in diesem Bereich eine weitere Verbesserung der Standzeiten erzielen. Zu den etablierten Bestandteilen einer modernen Zementiertechnik gehören das Anmischen unter Vakuum, Markraumstopper, Zementralisierungselemente oder die Verwendung einer Jet-Lavage. Das Design des zementierten Schaftes ist abhängig von der wichtigeren Oberflächenbeschaffenheit. Hierbei haben sich polierte Schäfte im Vergleich zu rauen Schäften in klinischen Studien als leicht überlegen erwiesen.

Abstract

For decades the cemented anchorage of hip prostheses, especially for elderly patients, is the standard procedure. The cementing technique has turned out to be the determining factor for the survival of the implant. In the last few years developments in this field have been able to further improve the long-term survival. Established components of the modern cementing technique are vacuum-mixed cements, medullary canal plugs, centralising elements und the use of jet-lavages. The design of the cemented shaft depends on the more important surface finish. In the most clinical studies, polished shafts turned out to be slightly superior as compared to shafts with rough surfaces.

Literatur

  • 75 Judet J, Judet R. The use of an artificial femoral head for arthroplasty of the hip joint.  J Bone Joint Surg [Br]. 1950;  32 166-173
  • 1 Charnley J. The bonding of prostheses to bone by cement.  J Bone Joint Surg [Br]. 1964;  46 518-529
  • 2 Harris W H. Hybrid total hip replacement: rationale and intermediate clinical results. Review.  Clin Orthop Relat Res. 1996;  333 155-164
  • 3 Herberts P, Malchau H. Long-term registration has improved the quality of hip replacement: a review of the Swedish THR Register comparing 160,000 cases.  Acta Orthop Scand. 2000;  71 111-121
  • 4 Malchau H, Herberts P, Eisler T et al. The Swedish Total Hip Replacement Register.  J Bone Joint Surg [Am]. 2002;  84 (Suppl. 2) 2-20
  • 5 Breusch S J, Kühn K D. Knochenzemente auf Basis von Polymethylmethacrylat.  Orthopäde. 2003;  32 41-50
  • 6 Breusch S, Heisel C, Müller J et al. Influence of cement viscosity on cement interdigitation and venous fat content under in vivo conditions: a bilateral study of 13 sheep.  Acta Orthop Scand. 2002;  73 409-415
  • 7 Kühn K D. Bone cements. Up-to-date comparison of physical and chemical properties of commercial materials. Berlin; Springer 2000
  • 8 Webb J C, Spencer R F. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery.  J Bone Joint Surg [Br]. 2007;  89 851-857
  • 9 Postak P D, Greenwald A S. The influence of antibiotics on the fatigue life of acrylic bone cement.  J Bone Joint Surg [Am]. 2006;  88 (Suppl. 4) 148-155
  • 10 Hollander D A, von Walter M, Wirtz T et al. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4 V produced by direct laser forming.  Biomaterials. 2006;  27 955-963
  • 11 Zioupos P, Currey J D. Changes in the stiffness, strength, and toughness of human cortical bone with age.  Bone. 1998;  22 57-66
  • 12 Toksvig-Larsen S, Franzen H, Ryd L. Cement interface temperature in hip arthroplasty.  Acta Orthop Scand. 1991;  62 102-105
  • 13 Reckling F W, Dillon W L. The bone-cement interface temperature during total joint replacement.  J Bone Joint Surg [Am]. 1977;  59 80-82
  • 14 Linder L. Reaction of bone to the acute chemical trauma of bone cement.  J Bone Joint Surg [Am]. 1977;  59 82-87
  • 15 Breusch S J, Malchau H. What is modern cementing technique?. Breusch SJ, Malchau H The well-cemented total hip arthroplasty – theory and practice. Berlin, Heidelberg, New York, Tokio; Springer 2005: 146-149
  • 16 Little J P, Gray H A, Murray D W et al. Thermal effects of cement mantle thickness for hip resurfacing.  J Arthroplasty. 2008;  23 454-458
  • 17 Muller S D, Green S M, McCaskie A W. The dynamic volume changes of polymerising polymethyl methacrylate bone cement.  Acta Orthop Scand. 2002;  73 684-687
  • 18 Kwong F N, Power R A. A comparison of the shrinkage of commercial bone cements when mixed under vacuum.  J Bone Joint Surg [Br]. 2006;  88 120-122
  • 19 Mau H, Schelling K, Heisel C et al. Comparison of various vacuum mixing systems and bone cements as regards reliability, porosity and bending strength.  Acta Orthop Scand. 2004;  75 160-172
  • 20 Race A, Miller M A, Ayers K et al. Shrinkage of vacuum mixed cement causes interface gaps: gap distribution depends on stem surface finish.  J Bone Joint Surg [Br]. 2004;  86 (Suppl. I) 9
  • 21 Wang J S, Franzen H, Lidgren L. Interface gap after implantation of a cemented femoral stem in pigs.  Acta Orthop Scand. 1999;  70 234-239
  • 22 Keeling P, Prendergast P J, Lennon A B et al. Cement-in-cement revision hip arthroplasty: an analysis of clinical and biomechanical literature.  Arch Orthop Trauma Surg. 2008;  128 1193-1199
  • 23 Quinlan J F, O'Shea K, Doyle F et al. In-cement technique for revision hip arthroplasty.  J Bone Joint Surg [Br]. 2006;  88 730-733
  • 24 Havelin L I, Espehaug B, Vollset S E et al. The effect of the type of cement on early revision of Charnley total hip prostheses. A review of eight thousand five hundred and seventy-nine primary arthroplasties from the Norwegian Arthroplasty Register.  J Bone Joint Surg [Am]. 1995;  77 1543-1550
  • 25 Malchau H, Herberts P, Ahnfelt L. Prognosis of total hip replacement in Sweden. Follow-up of 92,675 operations performed 1978–1990.  Acta Orthop Scand. 1993;  64 497-506
  • 26 Puolakka T J, Pajamäki K J, Halonen P J et al. The Finnish Arthroplasty Register: report of the hip register.  Acta Orthop Scand. 2001;  72 433-441
  • 27 Kreutzer J, Schneider M, Schlegel U et al. Zementierte Hüftendoprothetik in Deutschland – ein Update.  Z Orthop Ihre Grenzgeb. 2005;  143 48-55
  • 28 Norton M R, Eyres K S. Irrigation and suction technique to ensure reliable cement penetration for total knee arthroplasty.  J Arthroplasty. 2000;  15 468-474
  • 29 Wirtz D C, Lelgemann B, Jungwirth F et al. A new method to optimize the adhesion between bone cement and acetabular bone in total hip arthroplasty.  Z Orthop Ihre Grenzgeb. 2003;  141 209-216
  • 30 Breusch S J, Schneider U, Kreutzer J et al. Einfluß der Zementiertechnik auf das Zementierergebnis am koxalen Femurende.  Orthopäde. 2000;  29 260-270
  • 31 Noble P C, Collier M B, Maltry J A et al. Pressurization and centralization enhance the quality and reproducibility of cement mantles.  Clin Orthop Relat Res. 1998;  355 77-89
  • 32 Breusch S J, Draenert K. Vacuum application of bone cement in total hip arthroplasty.  Hip Int. 1997;  7 137-152
  • 33 Ungethuem S, Lehner B, Reitzel T et al. Einfluss der femoralen Zementiertechnik auf das Zementierergebnis. Vergleich von retrograder Technik und Vakuumapplikation.  Orthopäde. 2005;  34 690-697
  • 34 Breusch S J, Norman T L, Schneider U et al. Lavage technique in total hip arthroplasty: jet lavage produces better cement penetration than syringe lavage in the proximal femur.  J Arthroplasty. 2000;  15 921-927
  • 35 Jansson V, Heimkes B, Zimmer M. Stress transfer at the femoral bone/bone cement interface as a function of the cement thickness.  Arch Orthop Trauma Surg. 1993;  112 65-68
  • 36 Cristofolini L, Erani P, Savigni P et al. Preclinical assessment of the long-term endurance of cemented hip stems. Part 2: in-vitro and ex-vivo fatigue damage of the cement mantle.  Proc Inst Mech Eng [H]. 2007;  221 585-599
  • 37 Cristofolini L, Erani P, Savigni P et al. Increased long-term failure risk associated with excessively thin cement mantle in cemented hip arthroplasty: a comparative in vitro study.  Clin Biomech (Bristol, Avon). 2007;  22 410-421
  • 38 Kalteis T, Lüring C, Gugler G et al. Akute Gewebetoxizität von PMMA-Knochenzementen.  Z Orthop Ihre Grenzgeb. 2004;  142 666-672
  • 39 Ahmed A M, Raab S, Miller J E. Metal/cement interface strength in cemented stem fixation.  J Orthop Res. 1984;  2 105-118
  • 40 Scheerlinck T, Casteleyn P P. The design features of cemented femoral hip implants. Review.  J Bone Joint Surg [Br]. 2006;  88 1409-1418
  • 41 Cristofolini L, Teutonico A S, Monti L et al. Comparative in vitro study on the long term performance of cemented hip stems: validation of a protocol to discriminate between “good” and “bad” designs.  J Biomech. 2003;  36 1603-1615
  • 42 Mohler C G, Callaghan J J, Collis D K et al. Early loosening of the femoral component at the cement-prosthesis interface after total hip replacement.  J Bone Joint Surg [Am]. 1995;  77 1315-1322
  • 43 Dowd J E, Cha C W, Trakru S et al. Failure of total hip arthroplasty with a precoated prosthesis. 4- to 11-year results.  Clin Orthop Relat Res. 1998;  355 123-136
  • 44 Herberts P, Malchau H. How outcome studies have changed total hip arthroplasty practices in Sweden.  Clin Orthop Relat Res. 1997;  344 44-60
  • 45 Scheerlinck T, Vandenbussche P, Noble P C. Quantification of stem-cement interfacial gaps: In vitro CT analysis of Charnley-Kerboul and Lubinus SPII femoral hip implants.  J Bone Joint Surg [Br]. 2008;  90 107-113
  • 46 Alfaro-Adrián J, Gill H S, Murray D W. Cement migration after THR. A comparison of charnley elite and exeter femoral stems using RSA.  J Bone Joint Surg [Br]. 1999;  81 130-134
  • 47 Dall D M, Learmonth I D, Solomon M I et al. Fractures and loosening of Charnley femoral stems: comparison between first-generation and subsequent designs.  J Bone Joint Surg [Br]. 1993;  75 259-265
  • 48 Collis D K, Mohler C G. Loosening rates and bone lysis with rough finished and polished stems.  Clin Orthop Relat Res. 1998;  355 113-122
  • 49 Collis D K, Mohler C G. Comparison of clinical outcomes in total hip arthroplasty using rough and polished cemented stems with essentially the same geometry.  J Bone Joint Surg [Am]. 2002;  84 586-592
  • 50 Kerboull L, Lefêvre N, Hamadouche M. Influence de l'état de surface sur la fixation des implants fémoraux cimentés: étude statistique comparative à 9 ans de deux séries homogèns d'arthroplasties totales de hanche.  Rev Chir Orthop Reparatrice Appar Mot. 1999;  85 117-118
  • 51 Della Valle A G, Zoppi A, Peterson M G et al. A rough surface finish adversely affects the survivorship of a cemented femoral stem.  Clin Orthop Relat Res. 2005;  436 158-163
  • 52 Crawford R W, Gie G A, Ling R S M. An 8–10 year clinical review comparing matt and polished Exeter stems.  Orthop Trans. 1998;  22 40
  • 53 Crawford S A, Siney P D, Wroblewski B M. Revision of failed total hip arthroplasty with a proximal femoral modular cemented stem.  J Bone Joint Surg [Br]. 2000;  82 684-688
  • 54 Middleton R G, Howie D W, Costi K et al. Effects of design changes on cemented tapered femoral stem fixation.  Clin Orthop Relat Res. 1998;  355 47-56
  • 55 Barrack R L, Mulroy Jr R D, Harris W H. Improved cementing techniques and femoral component loosening in young patients with hip arthroplasty. A 12-year radiographic review.  J Bone Joint Surg [Br]. 1992;  74 385-389
  • 56 Berli B J, Schäfer D, Morscher E W. Ten-year survival of the MS-30 matt-surfaced cemented stem.  J Bone Joint Surg [Br]. 2005;  87 928-933
  • 57 Clauss M, Reitzel T, Pritsch M et al. Der zementierte MS-30-Schaft: Ergebnisse einer Multi-surgeon-Serie von 333 konsekutiven Fällen.  Orthopäde. 2006;  35 776-783
  • 58 Hinrichs F, Boudriot U, Griss P. 10-Jahres-Ergebnisse mit einem zementierten feingestrahlten Titan-Aluminium-Vanadium-Hüftendoprothesenschaft.  Z Orthop Ihre Grenzgeb. 2000;  138 52-56
  • 59 Langlais F, Belot N, Ropars M et al. Antibiotic cements in articular prostheses: current orthopaedic concepts.  Int J Antimicrob Agents. 2006;  28 84-89
  • 60 Engesaeter L B, Lie S A, Espehaug B et al. Antibiotic prophylaxis in total hip arthroplasty: effects of antibiotic prophylaxis systemically and in bone cement on the revision rate of 22,170 primary hip replacements followed 0–14 years in the Norwegian Arthroplasty Register.  Acta Orthop Scand. 2003;  74 644-651
  • 61 Espehaug B, Furnes O, Havelin L I et al. The type of cement and failure of total hip replacements.  J Bone Joint Surg [Br]. 2002;  84 832-838
  • 62 Duncan C P, Beauchamp C. A temporary antibiotic-loaded joint replacement system for management of complex infections involving the hip.  Orthop Clin North [Am]. 1993;  24 751-759
  • 63 Cui Q, Mihalko W M, Shields J S et al. Antibiotic-impregnated cement spacers for the treatment of infection associated with total hip or knee arthroplasty.  J Bone Joint Surg [Am]. 2007;  89 871-882
  • 64 DeLuise M, Scott C P. Addition of hand-blended generic tobramycin in bone cement: effect on mechanical strength.  Orthopedics. 2004;  27 1289-1291
  • 65 Askew M J, Kufel M F, Fleissner Jr P R et al. Effect of vacuum mixing on the mechanical properties of antibiotic-impregnated polymethylmethacrylate bone cement.  J Biomed Mater Res. 1990;  24 573-580
  • 66 Klekamp J, Dawson J M, Haas D W et al. The use of vancomycin and tobramycin in acrylic bone cement: biomechanical effects and elution kinetics for use in joint arthroplasty.  J Arthroplasty. 1999;  14 339-346
  • 67 Kapoor B, Datir S P, Davis B et al. Femoral cement pressurization in hip arthroplasty: a laboratory comparison of three techniques.  Acta Orthop Scand. 2004;  75 708-712
  • 68 Woo R, Minster G J, Fitzgerald R H et al. Pulmonary fat embolism in revision hip arthroplasty.  Clin Orthop Relat Res. 1995;  319 41-53
  • 69 Hofmann S, Hopf R, Mayr G et al. In vivo femoral intramedullary pressure during uncemented hip arthroplasty.  Clin Orthop Relat Res. 1999;  360 136-146
  • 70 Pitto R P, Koessler M, Kuehle J W. Comparison of fixation of the femoral component without cement and fixation with use of a bone-vacuum cementing technique for the prevention of fat embolism during total hip arthroplasty. A prospective, randomized clinical trial.  J Bone Joint Surg [Am]. 1999;  81 831-843
  • 71 Parvizi J, Holiday A D, Ereth M H et al. The Frank Stinchfield Award. Sudden death during primary hip arthroplasty.  Clin Orthop Relat Res. 1999;  369 39-48
  • 72 Jansson V, Zimmer M, Kühne J H et al. Initial stability of an implanted cement-canal prosthesis. Results in experimental studies on human cadaver femurs.  Z Orthop Ihre Grenzgeb. 1993;  131 377-381
  • 73 Jansson V. The cement-canal prosthesis. A new cementation technique studied in cadaver femora.  Acta Orthop Scand. 1994;  65 221-224
  • 74 Cristofolini L, Erani P, Grupp T et al. In vitro long-term fatigue endurance of the secondary “Cement Injection Stem” hip prosthesis.  Artif Organs. 2007;  31 441-451

Dr. Andreas Fottner

Orthopädische Klinik und Poliklinik
Ludwig-Maximilians-Universität München, Campus Großhadern

Marchioninistraße 15

81377 München

Phone: 0 89/70 95-28 17

Fax: 0 89/70 95-58 14

Email: andreas.fottner@med.uni-muenchen.de