Subscribe to RSS
DOI: 10.1055/s-0029-1243296
Extracorporeal Shock Wave Treatment in Ischemic Tissues: What is the Appropriate Number of Shock Wave Impulses?
Publication History
Publication Date:
10 December 2009 (online)
ABSTRACT
The dose-dependent effect of extracorporeal shock wave technology (ESWT) was evaluated using a murine skin flap model. Thirty-six Sprague-Dawley rats were divided into six groups (ESWT groups 1 through 5 and a control group). After surgery, shock wave impulses doses were administered: 200 (group 1), 500 (group 2), 1500 (group 3), 2500 (group 4), 5000 (group 5), and 0 (control group 6). Flap viability was evaluated on day 7. Overall, significantly smaller percentages of necrotic zones were observed in groups 2, 3, and 4 compared with groups 1, 5, and the control group (p < 0.05). ESWT treatment with 200 impulses was found to be ineffective. ESWT treatment of 5000 impulses resulted in a significant increase in the percentage of necrosis compared with other ESWT groups (p < 0.05). However, ESWT treatments between 500 and 2500 impulses at 0.11 mJ/mm2 enhanced epigastric skin flap survival significantly.
KEYWORDS
Extracorporeal shock wave - dose dependant - reconstructive flap - ischemic tissues
REFERENCES
- 1 Köhrmann K U, Neisius D, Rassweiler J. [The future of ESWL]. Urologe A. 2008; 47 569-570 572-577
- 2 Schaden W, Fischer A, Sailler A. Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin Orthop Relat Res. 2001; 387 90-94
- 3 Wang C J, Wang F S, Yang K D, Weng L H, Sun Y C, Yang Y J. The effect of shock wave treatment at the tendon-bone interface-an histomorphological and biomechanical study in rabbits. J Orthop Res. 2005; 23 274-280
- 4 Wang C J. An overview of shock wave therapy in musculoskeletal disorders. Chang Gung Med J. 2003; 26 220-232
- 5 Wang L, Qin L, Lu H B et al.. Extracorporeal shock wave therapy in treatment of delayed bone-tendon healing. Am J Sports Med. 2008; 36 340-347
- 6 Meirer R, Kamelger F S, Huemer G M, Wanner S, Piza-Katzer H. Extracorporal shock wave may enhance skin flap survival in an animal model. Br J Plast Surg. 2005; 58 53-57
- 7 Tanaka N, Kaneko M. Skin surface shock wave. Conf Proc IEEE Eng Med Biol Soc. 2006; 1 4123-4126
- 8 Kuo Y R, Wu W S, Hsieh Y L et al.. Extracorporeal shock wave enhanced extended skin flap tissue survival via increase of topical blood perfusion and associated with suppression of tissue pro-inflammation. J Surg Res. 2007; 143 385-392
- 9 Huemer G M, Meirer R, Gurunluoglu R et al.. Comparison of the effectiveness of gene therapy with transforming growth factor-beta or extracorporal shock wave therapy to reduce ischemic necrosis in an epigastric skin flap model in rats. Wound Repair Regen. 2005; 13 262-268
- 10 Meirer R, Brunner A, Deibl M, Oehlbauer M, Piza-Katzer H, Kamelger F S. Shock wave therapy reduces necrotic flap zones and induces VEGF expression in animal epigastric skin flap model. J Reconstr Microsurg. 2007; 23 231-236
- 11 Meirer R, Huemer G M, Oehlbauer M, Wanner S, Piza-Katzer H, Kamelger F S. Comparison of the effectiveness of gene therapy with vascular endothelial growth factor or shock wave therapy to reduce ischaemic necrosis in an epigastric skin flap model in rats. J Plast Reconstr Aesthet Surg. 2007; 60 266-271
- 12 Meirer R, Kamelger F S, Piza-Katzer H. Shock wave therapy: an innovative treatment method for partial thickness burns. Burns. 2005; 31 921-922
- 13 Padubidri A N, Browne Jr E. Modification in flap design of the epigastric artery flap in rats—a new experimental flap model. Ann Plast Surg. 1997; 39 500-504
- 14 Wang F S, Yang K D, Chen R F, Wang C J, Sheen-Chen S M. Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-beta1. J Bone Joint Surg Br. 2002; 84 457-461
- 15 Chen Y J, Wang C J, Yang K D et al.. Extracorporeal shock waves promote healing of collagenase-induced Achilles tendinitis and increase TGF-beta1 and IGF-I expression. J Orthop Res. 2004; 22 854-861
- 16 Chen Y J, Wurtz T, Wang C J et al.. Recruitment of mesenchymal stem cells and expression of TGF-beta 1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. J Orthop Res. 2004; 22 526-534
- 17 Zogović J. [Extracorporeal shock wave lithotripsy: prophylaxis, complications and therapy]. Srp Arh Celok Lek. 1997; 125 345-348
- 18 Gerdesmeyer L, Maier M, Haake M, Schmitz C. [Physical-technical principles of extracorporeal shockwave therapy (ESWT)]. Orthopade. 2002; 31 610-617
- 19 Fuchs G J, David R D, Fuchs A M. [Complications of extracorporeal shockwave lithotripsy]. Arch Esp Urol. 1989; 42(Suppl 1) 83-89
- 20 Wang C J, Huang H Y, Yang K, Wang F S, Wong M. Pathomechanism of shock wave injuries on femoral artery, vein and nerve. An experimental study in dogs. Injury. 2002; 33 439-446
- 21 Wang C J, Wang F S, Huang C C, Yang K D, Weng L H, Huang H Y. Treatment for osteonecrosis of the femoral head: comparison of extracorporeal shock waves with core decompression and bone-grafting. J Bone Joint Surg Am. 2005; 87 2380-2387
Dr. Romed Meirer
Aesthetic Austria GmbH
Fritz-Atzl-Strasse 8, 6300 Woergl, Austria
Email: romed.meirer@aestheticaustria.com