Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000070.xml
Semin Musculoskelet Radiol 2010; 14(1): 022-036
DOI: 10.1055/s-0030-1248703
© Thieme Medical Publishers
DOI: 10.1055/s-0030-1248703
Whole-Body Magnetic Resonance Imaging: Assessment of Skeletal Metastases
Further Information
Publication History
Publication Date:
12 March 2010 (online)
ABSTRACT
The concept of a rapid whole-body imaging technique with high resolution and the absence of ionizing radiation for the assessment of osseous metastatic disease is a desirable tool. This review article outlines the current perspective of whole-body magnetic resonance imaging in the assessment of skeletal metastatic disease, with comparisons made to alternative whole-body imaging modalities.
KEYWORDS
WBMRI - scintigraphy - computed tomography - skeletal metastases
REFERENCES
- 1 Imamura F, Kuriyama K, Seto T et al.. Detection of bone marrow metastases of small cell lung cancer with magnetic resonance imaging: early diagnosis before destruction of osseous structure and implications for staging. Lung Cancer. 2000; 27(3) 189-197
- 2 Damadian R. Tumor detection by nuclear magnetic resonance. Science. 1971; 171(976) 1151-1153
- 3 Lauterbur P C. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 1973; 242(5394) 190-191
- 4 Thrall J H, Ellis B I. Skeletal metastases. Radiol Clin North Am. 1987; 25(6) 1155-1170
- 5 Ghanem N, Uhl M, Brink I et al.. Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone. Eur J Radiol. 2005; 55(1) 41-55
- 6 Abrams H L, Spiro R, Goldstein N. Metastases in carcinoma; analysis of 1000 autopsied cases. Cancer. 1950; 3(1) 74-85
- 7 Altehoefer C, Ghanem N, Högerle S, Moser E, Langer M. Comparative detectability of bone metastases and impact on therapy of magnetic resonance imaging and bone scintigraphy in patients with breast cancer. Eur J Radiol. 2001; 40(1) 16-23
- 8 Bares R. Skeletal scintigraphy in breast cancer management. Q J Nucl Med. 1998; 42(1) 43-48
- 9 Hargaden G, O'Connell M, Kavanagh E, Powell T, Ward R, Eustace S. Current concepts in whole-body imaging using turbo short tau inversion recovery MR imaging. AJR Am J Roentgenol. 2003; 180(1) 247-252
- 10 Lauenstein T C, Freudenberg L S, Goehde S C et al.. Whole-body MRI using a rolling table platform for the detection of bone metastases. Eur Radiol. 2002; 12(8) 2091-2099
- 11 Daffner R H, Lupetin A R, Dash N, Deeb Z L, Sefczek R J, Schapiro R L. MRI in the detection of malignant infiltration of bone marrow. AJR Am J Roentgenol. 1986; 146(2) 353-358
- 12 Eustace S, Tello R, DeCarvalho V et al.. A comparison of whole-body turboSTIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. AJR Am J Roentgenol. 1997; 169(6) 1655-1661
- 13 Daldrup-Link H E, Franzius C, Link T M et al.. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol. 2001; 177(1) 229-236
- 14 Engelhard K, Hollenbach H P, Wohlfart K, von Imhoff E, Fellner F A. Comparison of whole-body MRI with automatic moving table technique and bone scintigraphy for screening for bone metastases in patients with breast cancer. Eur Radiol. 2004; 14(1) 99-105
- 15 Mentzel H J, Kentouche K, Sauner D et al.. Comparison of whole-body STIR-MRI and 99mTc-methylene-diphosphonate scintigraphy in children with suspected multifocal bone lesions. Eur Radiol. 2004; 14(12) 2297-2302
- 16 Lauenstein T C, Goehde S C, Herborn C U et al.. Whole-body MR imaging: evaluation of patients for metastases. Radiology. 2004; 233(1) 139-148
- 17 Ghanem N, Altehoefer C, Kelly T et al.. Whole-body MRI in comparison to skeletal scintigraphy in detection of skeletal metastases in patients with solid tumors. In Vivo. 2006; 20(1) 173-182
- 18 Frat A, Ağildere M, Gençoğlu A et al.. Value of whole-body turbo short tau inversion recovery magnetic resonance imaging with panoramic table for detecting bone metastases: comparison with 99MTc-methylene diphosphonate scintigraphy. J Comput Assist Tomogr. 2006; 30(1) 151-156
- 19 Giraudet A L, Vanel D, Leboulleux S et al.. Imaging medullary thyroid carcinoma with persistent elevated calcitonin levels. J Clin Endocrinol Metab. 2007; 92(11) 4185-4190
- 20 Nakanishi K, Kobayashi M, Takahashi S et al.. Whole body MRI for detecting metastatic bone tumor: comparison with bone scintigrams. Magn Reson Med Sci. 2005; 4(1) 11-17
- 21 Kumar J, Seith A, Kumar A et al.. Whole-body MR imaging with the use of parallel imaging for detection of skeletal metastases in pediatric patients with small-cell neoplasms: comparison with skeletal scintigraphy and FDG PET/CT. Pediatr Radiol. 2008; 38(9) 953-962
- 22 Sohaib S A, Cook G, Allen S D, Hughes M, Eisen T, Gore M. Comparison of whole-body MRI and bone scintigraphy in the detection of bone metastases in renal cancer. Br J Radiol. 2009; 82(980) 632-639
- 23 Schmidt G P, Baur-Melnyk A, Haug A et al.. Whole-body MRI at 1.5 T and 3 T compared with FDG-PET-CT for the detection of tumour recurrence in patients with colorectal cancer. Eur Radiol. 2009; 19(6) 1366-1378
- 24 Takenaka D, Ohno Y, Matsumoto K et al.. Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging. 2009; 30(2) 298-308
- 25 Venkitaraman R, Cook G J, Dearnaley D P et al.. Whole-body magnetic resonance imaging in the detection of skeletal metastases in patients with prostate cancer. J Med Imaging Radiat Oncol. 2009; 53(3) 241-247
- 26 Kellenberger C J, Epelman M, Miller S F, Babyn P S. Fast STIR whole-body MR imaging in children. Radiographics. 2004; 24(5) 1317-1330
- 27 Shortt C P, Gleeson T G, Breen K A et al.. Whole-body MRI versus PET in assessment of multiple myeloma disease activity. AJR Am J Roentgenol. 2009; 192(4) 980-986
- 28 El-Khoury G Y, Dalinka M K, Alazraki N et al.. Metastatic bone disease. American College of Radiology. ACR appropriateness criteria. Radiology. 2000; 215(suppl) 283-293
- 29 Müller-Horvat C, Radny P, Eigentler T K et al.. Prospective comparison of the impact on treatment decisions of whole-body magnetic resonance imaging and computed tomography in patients with metastatic malignant melanoma. Eur J Cancer. 2006; 42(3) 342-350
- 30 Ohno Y, Koyama H, Nogami M et al.. Whole-body MR imaging vs. FDG-PET: comparison of accuracy of M-stage diagnosis for lung cancer patients. J Magn Reson Imaging. 2007; 26(3) 498-509
- 31 Squillaci E, Manenti G, Mancino S et al.. Staging of colon cancer: whole-body MRI vs. whole-body PET-CT—initial clinical experience. Abdom Imaging. 2008; 33(6) 676-688
- 32 Schmidt G P, Baur-Melnyk A, Haug A et al.. Comprehensive imaging of tumor recurrence in breast cancer patients using whole-body MRI at 1.5 and 3 T compared to FDG-PET-CT. Eur J Radiol. 2008; 65(1) 47-58
- 33 Blebea J S, Houseni M, Torigian D A et al.. Structural and functional imaging of normal bone marrow and evaluation of its age-related changes. Semin Nucl Med. 2007; 37(3) 185-194
- 34 Hwang S, Panicek D M. Magnetic resonance imaging of bone marrow in oncology, Part 1. Skeletal Radiol. 2007; 36(10) 913-920
- 35 Walker R, Kessar P, Blanchard R et al.. Turbo STIR magnetic resonance imaging as a whole-body screening tool for metastases in patients with breast carcinoma: preliminary clinical experience. J Magn Reson Imaging. 2000; 11(4) 343-350
- 36 Krishnamurthy G T, Tubis M, Hiss J, Blahd W H. Distribution pattern of metastatic bone disease. A need for total body skeletal image. JAMA. 1977; 237(23) 2504-2506
- 37 Barkhausen J, Quick H H, Lauenstein T et al.. Whole-body MR imaging in 30 seconds with real-time true FISP and a continuously rolling table platform: feasibility study. Radiology. 2001; 220(1) 252-256
- 38 Dwyer A J, Frank J A, Sank V J, Reinig J W, Hickey A M, Doppman J L. Short-Ti inversion-recovery pulse sequence: analysis and initial experience in cancer imaging. Radiology. 1988; 168(3) 827-836
- 39 Jones K M, Unger E C, Granstrom P, Seeger J F, Carmody R F, Yoshino M. Bone marrow imaging using STIR at 0.5 and 1.5 T. Magn Reson Imaging. 1992; 10(2) 169-176
- 40 Constable R T, Smith R C, Gore J C. Signal-to-noise and contrast in fast spin echo (FSE) and inversion recovery FSE imaging. J Comput Assist Tomogr. 1992; 16(1) 41-47
- 41 Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med. 1986; 3(6) 823-833
- 42 Vanel D, Bittoun J, Tardivon A. MRI of bone metastases. Eur Radiol. 1998; 8(8) 1345-1351
- 43 Mehta R C, Marks M P, Hinks R S, Glover G H, Enzmann D R. MR evaluation of vertebral metastases: T1-weighted, short-inversion-time inversion recovery, fast spin-echo, and inversion-recovery fast spin-echo sequences. AJNR Am J Neuroradiol. 1995; 16(2) 281-288
- 44 Hoane B R, Shields A F, Porter B A, Shulman H M. Detection of lymphomatous bone marrow involvement with magnetic resonance imaging. Blood. 1991; 78(3) 728-738
- 45 Flickinger F W, Sanal S M. Bone marrow MRI: techniques and accuracy for detecting breast cancer metastases. Magn Reson Imaging. 1994; 12(6) 829-835
- 46 Kavanagh E, Smith C, Eustace S. Whole-body turbo STIR MR imaging: controversies and avenues for development. Eur Radiol. 2003; 13(9) 2196-2205
- 47 Steinborn M M, Heuck A F, Tiling R, Bruegel M, Gauger L, Reiser M F. Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr. 1999; 23(1) 123-129
- 48 O'Connell M J, Hargaden G, Powell T, Eustace S J. Whole-body turbo short tau inversion recovery MR imaging using a moving tabletop. AJR Am J Roentgenol. 2002; 179(4) 866-868
- 49 Johnston C, Brennan S, Ford S, Eustace S. Whole body MR imaging: applications in oncology. Eur J Surg Oncol. 2006; 32(3) 239-246
- 50 Mazumdar A, Siegel M J, Narra V, Luchtman-Jones L. Whole-body fast inversion recovery MR imaging of small cell neoplasms in pediatric patients: a pilot study. AJR Am J Roentgenol. 2002; 179(5) 1261-1266
- 51 Baur A, Stäbler A, Bartl R, Lamerz R, Scheidler J, Reiser M. MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiol. 1997; 26(7) 414-418
- 52 Kwee T C, Takahara T, Ochiai R et al.. Whole-body diffusion-weighted magnetic resonance imaging. Eur J Radiol. 2009; 70(3) 409-417
- 53 Edelstyn G A, Gillespie P J, Grebbell F S. The radiological demonstration of osseous metastases. Experimental observations. Clin Radiol. 1967; 18(2) 158-162
- 54 Avrahami E, Tadmor R, Dally O, Hadar H. Early MR demonstration of spinal metastases in patients with normal radiographs and CT and radionuclide bone scans. J Comput Assist Tomogr. 1989; 13(4) 598-602
- 55 Frank J A, Ling A, Patronas N J et al.. Detection of malignant bone tumors: MR imaging vs scintigraphy. AJR Am J Roentgenol. 1990; 155(5) 1043-1048
- 56 Algra P R, Bloem J L, Tissing H, Falke T H, Arndt J W, Verboom L J. Detection of vertebral metastases: comparison between MR imaging and bone scintigraphy. Radiographics. 1991; 11(2) 219-232
- 57 Shie P, Cardarelli R, Brandon D, Erdman W, Abdulrahim N. Meta-analysis: comparison of F-18 fluorodeoxyglucose-positron emission tomography and bone scintigraphy in the detection of bone metastases in patients with breast cancer. Clin Nucl Med. 2008; 33(2) 97-101
- 58 Schirrmeister H, Glatting G, Hetzel J et al.. Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med. 2001; 42(12) 1800-1804
- 59 Sedonja I, Budihna N V. The benefit of SPECT when added to planar scintigraphy in patients with bone metastases in the spine. Clin Nucl Med. 1999; 24(6) 407-413
- 60 Roland J, van den Weyngaert D, Krug B, Brans B, Scalliet P, Vandevivere J. Metastases seen on SPECT imaging despite a normal planar bone scan. Clin Nucl Med. 1995; 20(12) 1052-1054
- 61 Savelli G, Maffioli L, Maccauro M, De Deckere E, Bombardieri E. Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med. 2001; 45(1) 27-37
- 62 Söderlund V. Radiological diagnosis of skeletal metastases. Eur Radiol. 1996; 6(5) 587-595
- 63 Layer G, Steudel A, Schüller H et al.. Magnetic resonance imaging to detect bone marrow metastases in the initial staging of small cell lung carcinoma and breast carcinoma. Cancer. 1999; 85(4) 1004-1009
- 64 Khurana J S, Rosenthal D I, Rosenberg A E, Mankin H J. Skeletal metastases in liposarcoma detectable only by magnetic resonance imaging. Clin Orthop Relat Res. 1989; (243) 204-207
- 65 Nakanishi K, Kobayashi M, Nakaguchi K et al.. Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci. 2007; 6(3) 147-155
- 66 Leboulleux S, Dromain C, Vataire A L et al.. Prediction and diagnosis of bone metastases in well-differentiated gastro-entero-pancreatic endocrine cancer: a prospective comparison of whole body magnetic resonance imaging and somatostatin receptor scintigraphy. J Clin Endocrinol Metab. 2008; 93(8) 3021-3028
- 67 Yamaguchi T. Intertrabecular vertebral metastases: metastases only detectable on MR imaging. Semin Musculoskelet Radiol. 2001; 5(2) 171-175
- 68 Smith R C, Reinhold C, Lange R C, McCauley T R, Kier R, McCarthy S. Fast spin-echo MR imaging of the female pelvis. Part I. Use of a whole-volume coil. Radiology. 1992; 184(3) 665-669
- 69 Fleckenstein J L, Archer B T, Barker B A, Vaughan J T, Parkey R W, Peshock R M. Fast short-tau inversion-recovery MR imaging. Radiology. 1991; 179(2) 499-504
- 70 Bydder G M, Hajnal J V, Young I R. MRI: use of the inversion recovery pulse sequence. Clin Radiol. 1998; 53(3) 159-176
- 71 Buhmann Kirchhoff S, Becker C, Duerr H R, Reiser M, Baur-Melnyk A. Detection of osseous metastases of the spine: comparison of high resolution multi-detector-CT with MRI. Eur J Radiol. 2009; 69(3) 567-573
- 72 Pfannenberg C, Aschoff P, Schanz S et al.. Prospective comparison of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma. Eur J Cancer. 2007; 43(3) 557-564
- 73 Phelps M E. PET: the merging of biology and imaging into molecular imaging. J Nucl Med. 2000; 41(4) 661-681
- 74 Schmidt G P, Haug A R, Schoenberg S O, Reiser M F. Whole-body MRI and PET-CT in the management of cancer patients. Eur Radiol. 2006; 16(6) 1216-1225
- 75 Brix G, Lechel U, Glatting G et al.. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005; 46(4) 608-613
- 76 Cook G JR. Skeletal metastases: what is the future role for nuclear medicine?. Eur J Nucl Med Mol Imaging. 2009; 36(11) 1803-1806
- 77 Israel O, Goldberg A, Nachtigal A et al.. FDG-PET and CT patterns of bone metastases and their relationship to previously administered anti-cancer therapy. Eur J Nucl Med Mol Imaging. 2006; 33(11) 1280-1284
- 78 Schmidt G P, Schoenberg S O, Schmid R et al.. Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol. 2007; 17(4) 939-949
- 79 Antoch G, Vogt F M, Freudenberg L S et al.. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA. 2003; 290(24) 3199-3206
Michael MoynaghB.Sc.
Department of Radiology
Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland
Email: Michaelmoynagh@gmail.com