Planta Med 2011; 77(4): 334-339
DOI: 10.1055/s-0030-1250386
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

The Anti-Immobility Effect of Hyperoside on the Forced Swimming Test in Rats is Mediated by the D2-Like Receptors Activation

Juliana Schulte Haas1 , Eveline Dischkaln Stolz2 , Andresa Heemann Betti2 , Ana Cristina Stein2 , Jan Schripsema3 , Gilsane Lino von Poser1 , Stela Maris Kuze Rates2
  • 1Laboratório de Farmacognosia, Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
  • 2Laboratório de Psicofarmacologia Experimental, Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
  • 3Grupo Metabolômica, LCQUI/CCT, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
Further Information

Publication History

received February 24, 2010 revised August 27, 2010

accepted Sept. 6, 2010

Publication Date:
13 October 2010 (online)

Abstract

The crude extracts of Hypericum species native to South Brazil showed analgesic and antidepressant-like effects in rodents. The chemical characterization of these species revealed that they are rich in flavonoids and phloroglucinol derivatives. In the present study a detailed investigation was performed on the activities of hyperoside (HYP), a common flavonoid in the genus Hypericum. Hyperoside was obtained from the aerial parts of H. caprifoliatum by chromatographic procedures. Mice treated with single doses (10, 20 and 40 mg/kg i.p.) did not present signs of toxicity or weight loss. At 20 and 40 mg/kg i.p. the mice exploratory behavior in the open field test was reduced. At 20 mg/kg i. p. the pentobarbital sleeping time increased, but not the sleeping latency. No activity was found on the hot-plate (10 and 20 mg/kg i.p.) or in the acetic acid-induced writhing test (20 and 40 mg/kg p.o.). Nevertheless, an antidepressant-like effect in the forced swimming test in mice and rats was observed (HYP 10 and 20 mg/kg i.p. in mice; HYP 1.8 mg/kg/day p.o. in rats). The antidepressant-like effect in rats was prevented by the administration of sulpiride (50 mg/kg i.p.) a D2 antagonist. In conclusion, hyperoside was found to present a depressor effect on the central nervous system as well as an antidepressant-like effect in rodents which is, at least in part, mediated by the dopaminergic system.

References

  • 1 Dall'Agnol R, Ferraz A, Bernardi A P, Albring D, Nör C, Sarmento L, Lamb L, Hass M, von Poser G, Schapoval E E S. Antimicrobial activity of some Hypericum species.  Phytomedicine. 2003;  10 511-516
  • 2 Linde K, Berner M M, Kriston L. St John's wort for major depression.  Cochrane Database Syst Rev. 2008;  (4) CD000448
  • 3 Rahimi R, Nikfar S, Abdollahi M. Efficacy and tolerability of Hypericum perforatum in major depressive disorder in comparison with selective serotonin reuptake inhibitors: a meta-analysis.  Psychopharmacol Biol Psychiatry. 2009;  33 118-127
  • 4 Butterweck V, Schmidt M. St. John's wort: role of active compounds for its mechanism of action and efficacy.  Wien Med Wochenschr. 2007;  157 356-361
  • 5 Sarris J, Kavanagh D J. Kava and St. John's Wort: current evidence for use in mood and anxiety disorders.  J Altern Complement Med. 2009;  15 827-836
  • 6 Butterweck V, Jürgenliemk G, Nahrstedt A, Winterhoff H. Flavonoids from Hypericum perforatum show antidepressant activity in the forced swimming test.  Planta Med. 2000;  66 3-6
  • 7 Daudt R, von Poser G L, Neves G, Rates S M K. Screening for the antidepressant activity of some species of Hypericum from South Brazil.  Phytother Res. 2000;  15 344-346
  • 8 Gnerre C, von Poser G L, Ferraz A, Viana A F, Testa B, Rates S M K. Monoamine oxidase inhibitory activity of some Hypericum species native to South Brazil.  J Pharm Pharmacol. 2001;  53 1273-1279
  • 9 Viana A F, Rego J C, von Poser G, Ferraz A, Heckler A P, Costentin J, Rates S M K. The antidepressant like effect of Hypericum caprifoliatum Cham & Schlecht (Guttiferae) on forced swimming test results from an inhibition of neuronal monoamine uptake.  Neuropharmacology. 2005;  49 1042-1052
  • 10 Viana A F, Heckler A P, Fenner R, Rates S M K. Antinociceptive activity of Hypericum caprifoliatum and Hypericum polyanthemum (Guttiferae).  Braz J Med Biol Res. 2003;  36 631-634
  • 11 Nör C, Bernardi A P M, Haas J S, Schripsema J, Rech S B, von Poser G L. Phenolic constituents of Hypericum flowers.  Nat Prod Commun. 2008;  3 237-240
  • 12 Haas J S, Viana A F, Heckler A P M, von Poser G L, Rates S M K. The antinociceptive effect of a benzopyran (HP1) isolated from Hypericum polyanthemum in mice hot-plate test is blocked by naloxone.  Planta Med. 2010;  76 1419-1423
  • 13 Rylski M, Duriasz-Rowinka H, Rewerski W. The analgesic action of some flavonoids in the hot plate test.  Acta Physiol Pol. 1979;  30 385-388
  • 14 Sosa S, Pace R, Bornancin A, Morazzoni P, Riva A, Tubaro A, Della Loggia R. Topical anti-inflammatory activity of extracts and compounds from Hypericum perforatum L.  J Pharm Pharmacol. 2007;  59 703-709
  • 15 Hammer K D P, Hillwig M L, Solco A K S, Dixon P M, Delate K, Murphy P A, Wurtele E S, Birt D F. Inhibition of prostaglandin E2 production by anti-inflammatory Hypericum perforatum extracts and constituents in RAW264.7 mouse macrophage cells.  J Agric Food Chem. 2007;  55 7323-7331
  • 16 Lee S, Jung S H, Lee Y S, Yamada M, Kim B K, Ohuchi K, Shin K H. Antiinflammatory activity of hyperin from Acanthopanax chiisanensis roots.  Arch Pharm Res. 2004;  27 628-632
  • 17 Lee S, Park H S, Notsu Y, Ban H S, Kim Y P, Ishihara K, Hirasawa N, Jung S H, Lee Y S, Lim S S, Park E H, Shin K H, Seyama T, Hong J, Ohuchi K. Effects of hyperin, isoquercitrin and quercetin on lipopolysaccharide-induced nitrite production in rat peritoneal macrophages.  Phytother Res. 2008;  22 1552-1556
  • 18 Erdemoglu N, Akkol E K, Yesiladab E, Caliş I. Bioassay-guided isolation of anti-inflammatory and antinociceptive principles from a folk remedy, Rhododendron ponticum L. leaves.  J Ethnopharmacol. 2008;  119 172-178
  • 19 Brasil. Congresso Nacional. Lei n. 11 794. Regulamenta o inciso VII do § 1° do artigo 225 da Constituição Federal, estabelecendo procedimentos para o uso científico de animais. Revoga a lei n° 6638, de 8 de maio de 1979 e dá outras providências. D.O.U., Brasília, 8 de outubro de 2008. 
  • 20 Bankowski Z. CIOMS. Council for International Organization of Medical Sciences International guiding principles for biomedical research involving animals. 1985. Available at. http://www.cioms.ch/frame_1985_texts_of_guidelines.htm Accessed September 30, 2009
  • 21 Chang Q, Zuo Z, Chow M S, Ho W K. Difference in absorption of the two structurally similar flavonoid glycosides, hyperoside and isoquercitrin, in rats.  Eur J Pharm Biopharm. 2005;  59 549-555
  • 22 Porsolt R D, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants.  Arch Int Pharmacodyn Ther. 1977;  229 327-336
  • 23 Porsolt R D, Anton G, Blavet N, Jalfre M. Behavioural despair in rats: a new model sensitive to antidepressant treatments.  Eur J Pharmacol. 1978;  47 379-391
  • 24 Zhou T, Chen B, Fan G, Chai Y, Wu Y. Application of high-speed counter-current chromatography coupled with high-performance liquid chromatography-diode array detection for the preparative isolation and purification of hyperoside from Hypericum perforatum with online purity monitoring.  J Chromatogr A. 2006;  1116 97-101
  • 25 Zuo Z, Zhang L, Zhou L, Chang Q, Chow M. Intestinal absorption of hawthorn flavonoids – in vitro, in situ and in vivo correlations.  Life Sci. 2006;  79 2455-2462
  • 26 Juergenliemk G, Boje K, Huewel S, Lohmann C, Galla H J, Nahrstedt A. In vitro studies indicate that miquelianin (quercetin 3-O-beta-D-glucuronopyranoside) is able to reach the CNS from the small intestine.  Planta Med. 2003;  69 1013-1017
  • 27 Mayers A G, Baldwin D A. Antidepressants and their effect on sleep.  Hum Psychopharmacol. 2005;  20 533-559
  • 28 Butterweck V, Hegger M, Winterhoff H. Flavonoids of St. John's Wort reduce HPA axis function in the rat.  Planta Med. 2004;  70 1008-1011
  • 29 Prenner L, Sieben A, Zeller K, Weiser D, Häberlein H. Reduction of high-affinity β2-adrenergic receptor binding by hyperforin and hyperoside on rat C6 glioblastoma cells measured by fluorescence correlation spectroscopy.  Biochemistry. 2007;  46 5106-5113
  • 30 Denke A, Schempp H, Weiser D, Elstner E F. Biochemical activities of extracts from Hypericum perforatum L. 5th communication: dopamine-beta-hydroxylase-product quantification by HPLC and inhibition by hypericins and flavonoids.  Arzneimittelforschung. 2000;  50 415-419
  • 31 Grabowska M, Schlegel-Zawadzka M, Papp M, Nowak G. Effect of imipramine treatment on plasma dopamine beta-hydroxylase activity in chronic mild stress in rats.  Pol J Pharmacol. 2004;  56 825-829
  • 32 Cryan J F, Dalvi A, Jin S H, Hirsch B R, Lucki I, Thomas S A. Use of dopamine-beta-hydroxylase-deficient mice to determine the role of norepinephrine in the mechanism of action of antidepressant drugs.  J Pharmacol Exp Ther. 2001;  298 651-657
  • 33 Duterte-Boucher D, Leclère J F, Panissaud C, Costentin J. Acute effects of direct dopamine agonists in the mouse behavioral despair test.  Eur J Pharmacol. 1988;  154 185-190
  • 34 D'Aquila P S, Collu M, Pani L, Gessa G L, Serra G. Antidepressant-like effect of selective dopamine D1 receptor agonist in the behavioral despair animal model of depression.  Eur J Pharmacol. 1994;  262 107-111
  • 35 Stahl S M. Essential psychopharmacology – neuroscientific basis and practical applications, 2nd edition. New York; Cambridge University Press 2000: 241-243

Prof. Dr. Stela Maris Kuze Rates

Programa de Pós-graduação em Ciências Farmacêuticas
Universidade Federal do Rio Grande do Sul

Av. Ipiranga 2752

90610-000 Porto Alegre RS

Brazil

Phone: +55 51 33 08 54 55

Fax: +55 51 33 08 54 37

Email: stela.rates@ufrgs.br