Planta Med 2011; 77(7): 759-764
DOI: 10.1055/s-0030-1250568
Biochemistry, Molecular Biology and Biotechnology
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Correlation of Camptothecin-producing Ability and Phylogenetic Relationship in the Genus Ophiorrhiza

Varalee Viraporn1 , Mami Yamazaki2 , Kazuki Saito2 , Jessada Denduangboripant3 , Kongkanda Chayamarit4 , Taksina Chuanasa1 , Suchada Sukrong1
  • 1Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
  • 2Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
  • 3Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
  • 4The Botanical Garden Organization, Ministry of Natural Resources and Environment, Chiang Mai, Thailand
Further Information

Publication History

received June 29, 2010 revised Sept. 12, 2010

accepted October 25, 2010

Publication Date:
23 November 2010 (online)

Abstract

Camptothecin (CPT) is an essential precursor of semisynthetic chemotherapeutic agents for cancers throughout the world. In spite of the rapid growth of market demand, CPT raw material is still harvested by extraction from Camptotheca acuminata and Nothapodytes foetida because its total synthesis is not cost-effective. In this study, we examined eight species of the genus Ophiorrhiza (Rubiaceae) from Thailand as novel alternative sources of CPT. CPT and/or 9-methoxy camptothecin (9-MCPT) were detected at different amounts in the leaf and root extracts of five species. We found that the CPT production ability of Ophiorrhiza spp. in Thailand was related mainly to species, not habitat. Chloroplast matK and nuclear TopI genes of eight species were investigated and compared with those of other Ophiorrhiza sequences from GenBank in order to classify and study the evolution in this genus. The molecular phylogenetic trees of both separated and combined matK and TopI nucleotide sequences revealed a major clade of Ophiorrhiza taxa correlated with production of CPT and its derivatives. Several amino acid markers of CPT- or 9-MCPT-producing Ophiorrhiza plants were also suggested from the alignment of TopI amino acid sequences. Our findings suggest that genetic factors play an important role in determining the CPT- and 9-MCPT-producing properties of Ophiorrhiza plants. Consequently, matK and TopI gene sequences could be utilized for the prediction of CPT and 9-MCPT production ability of members of Ophiorrhiza.

References

  • 1 Hsiang Y H, Hertzberg R, Hecht S, Liu L F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I.  J Biol Chem. 1985;  260 14873-14878
  • 2 Dancey J, Eisenhauer E A. Current perspectives on camptothecins in cancer treatment.  Br J Cancer. 1996;  74 327-338
  • 3 Lorence A, Nessler C L. Camptothecin, over four decades of surprising findings.  Phytochemistry. 2004;  65 2735-2749
  • 4 Das B, Madhusudhan P. Isolation, characterization and chemoenzymatic sythesis of 9-methoxy-20-(s)-mappicine, a new constituent of Nothapodytes foetida.  Nat Prod Res. 1999;  14 135-140
  • 5 Wall M E, Wani M C, Cook C E, Palmer K H, McPhail A T, Sim G A. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata.  J Am Chem Soc. 1966;  88 3888-3890
  • 6 Govindachari T R, Viswanathan N. Alkaloids of Mappia foetida.  Phytochemistry. 1972;  11 3529-3531
  • 7 Gunasekera S P, Badawi M M, Cordell G A, Farnsworth N R, Chitnis M. Plant anticancer agents X. Isolation of camptothecin and 9-methoxy camptothecin from Ervatamia heyneana.  J Nat Prod. 1979;  42 475-477
  • 8 Klausmeyer P, McCloud T G, Melillo G, Scudiero D A, Cardellina 2nd J H, Shoemaker R H. Identification of a new natural camptothecin analogue in targeted screening for HIF-1alpha inhibitors.  Planta Med. 2007;  73 49-52
  • 9 Yamazaki Y, Urano A, Sudo H, Kitajima M, Takayama H, Yamazaki M, Aimi N, Saito K. Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants.  Phytochemistry. 2003;  62 461-470
  • 10 Roja G. Comparative studies on the camptothecin content from Nothapodytes foetida and Ophiorrhiza species.  Nat Prod Res. 2006;  20 85-88
  • 11 Asano T, Sudo H, Yamazaki M, Saito K. Camptothecin production by in vitro cultures and plant regeneration in Ophiorrhiza species.  Methods Mol Biol. 2009;  547 337-345
  • 12 Kitajima M, Fujii N, Yoshino F, Sudo H, Saito K, Aimi N, Takayama H. Camptothecins and two new monoterpene glucosides from Ophiorrhiza liukiuensis.  Chem Pharm Bull (Tokyo). 2005;  53 1355-1358
  • 13 Arbain D, Putra D P, Sargent M V. The alkaloids of Ophiorrhiza filistipula.  Aust J Chem. 1993;  46 977-985
  • 14 Shaw H K A. A dictionary of the flowering plants and ferns by J.C. Willis, 8th edition. London; C.U.P. 1973
  • 15 Darwin P S. The pacific species of Ophiorrhiza L. (Rubiaceae).  Lyonia. 1976;  1 47-102
  • 16 Kudoh H, Sugawara T, Wu S, Murata J. Morph-specific correlations between floral traits in a distylous Ophiorrhiza napoensis (Rubiaceae) population in southern China.  J Trop Ecol. 2001;  17 719-728
  • 17 Chou F S, Yang C K, Liao C K. Taxonomic status of Ophiorrhiza michelloides (Masam.) X. R. Lo (Rubiaceae) in Taiwan.  Taiwania. 2006;  51 143-147
  • 18 Nakamura K, Chung S W, Kokubugata G, Denda T, Yokota M. Phylogenetic systematics of the monotypic genus Hayataella (Rubiaceae) endemic to Taiwan.  J Plant Res. 2006;  119 657-661
  • 19 Nakamura K, Denda T, Kameshima O, Yokota M. Breakdown of distyly in a tetraploid variety of Ophiorrhiza japonica (Rubiaceae) and its phylogenetic analysis.  J Plant Res. 2007;  120 501-509
  • 20 Martin K P, Zhang C L, Hembrom M E, Slater A, Madassery J. Adventitious root induction in Ophiorrhiza prostrata: a tool for the production of camptothecin (an anticancer drug) and rapid propagation.  Plant Biotechnol Rep. 2008;  2 163-169
  • 21 Roja G. Micropropagation and production of camptothecin from in vitro plants of Ophiorrhiza rugosa var. decumbens.  Nat Prod Res. 2008;  22 1017-1023
  • 22 Sirikantaramas S, Yamazaki M, Saito K. Mutations in topoisomerase I as a self-resistance mechanism coevolved with the production of the anticancer alkaloid camptothecin in plants.  Proc Natl Acad Sci USA. 2008;  105 6782-6786
  • 23 Chamchumroon V, Puff C. The Rubiaceae of Ko Chang, south-eastern Thailand.  Thai For Bull (Bot). 2003;  31 13-26
  • 24 Schanzer I A. Systematic notes on Ophiorrhiza trichocarpon Blume (Rubiaceae) and some related species.  Thai For Bull (Bot). 2004;  32 132-145
  • 25 Schanzer I A. Three new species of Ophiorrhiza (Rubiaceae-Ophiorrhizeae) from Thailand.  Thai For Bull (Bot). 2005;  33 161-170
  • 26 Chan H H, Li C Y, Damu A G, Wu T S. Anthraquinones from Ophiorrhiza hayatana OHWI.  Chem Pharm Bull (Tokyo). 2005;  53 1232-1235
  • 27 Redinbo M R, Stewart L, Kuhn P, Champoux J J, Hol W G. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA.  Science. 1998;  279 1504-1513
  • 28 Champoux J J. DNA topoisomerases: structure, function, and mechanism.  Annu Rev Biochem. 2001;  70 369-413
  • 29 Gupta M, Fujimori A, Pommier Y. Eukaryotic DNA topoisomerases I.  Biochim Biophys Acta. 1995;  1262 1-14
  • 30 Benedetti P, Fiorani P, Capuani L, Wang J C. Camptothecin resistance from a single mutation changing glycine 363 of human DNA topoisomerase I to cysteine.  Cancer Res. 1993;  53 4343-4348

Asst. Prof. Dr. Suchada Sukrong

Department of Pharmacognosy and Pharmaceutical Botany
Faculty of Pharmaceutical Sciences
Chulalongkorn University

254 Phaya Thai

Pathumwan, Bangkok 10330

Thailand

Phone: +66 8 22 18 83 64

Fax: +66 8 22 18 83 57

Email: suchada.su@chula.ac.th