Subscribe to RSS
DOI: 10.1055/s-0030-1253224
Genetic Determinants of Drug-induced Cholestasis and Intrahepatic Cholestasis of Pregnancy
Publication History
Publication Date:
26 April 2010 (online)
ABSTRACT
Intrahepatic cholestasis of pregnancy and drug-induced cholestasis are two clinically important forms of acquired cholestatic liver disease. The understanding of the underlying mechanisms of acquired cholestasis has recently made considerable progress by the identification of canalicular ATP-binding cassette (ABC) transporters as likely targets for these forms of cholestasis. Cholestasis of pregnancy is linked to estrogen and progesterone metabolites. These metabolites have been shown to impair the bile salt export pump (BSEP) function by an indirect mechanism. In addition, genetic variants (as well as mutants) of the genes coding for the phosphatidylcholine translocator MDR3 and BSEP and for the farnesoid X receptor, which is critical in the transcriptional activation of MDR3 (ABCB4) and BSEP (ABCB11) have been associated with intrahepatic cholestasis of pregnancy. The pathogenesis of drug-induced liver injury encompasses a wide spectrum of mechanisms, some of which are still poorly understood. BSEP is now known to be subject to drug inhibition in susceptible patients. Information on genetic factors rendering individuals susceptible to inhibition of BSEP by drugs or their metabolites is still scarce. Besides rare mutations that have been linked to drug-induced cholestasis, the common p.V444A polymorphism of BSEP has been identified as a potential risk factor. In this review, the authors summarize key concepts of physiology of bile formation, diagnostic principles to indentify these forms of acquired cholestasis, as well as pathogenetic mechanisms leading to intrahepatic cholestasis of pregnancy or drug-induced cholestasis. In addition, they review the current knowledge on genetic susceptibility factors for these two forms of cholestasis.
KEYWORDS
Pharmacogenetics - cholestasis - drug-induced - pregnancy
REFERENCES
- 1 Russell D W. Fifty years of advances in bile acid synthesis and metabolism. J Lipid Res. 2009; 50(Suppl) S120-S125
- 2 Meier P J, Stieger B. Bile salt transporters. Annu Rev Physiol. 2002; 64 635-661
- 3 Trauner M, Boyer J L. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev. 2003; 83(2) 633-671
- 4 Pauli-Magnus C, Stieger B, Meier Y, Kullak-Ublick G A, Meier P J. Enterohepatic transport of bile salts and genetics of cholestasis. J Hepatol. 2005; 43(2) 342-357
- 5 Hofmann A F, Hagey L R. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci. 2008; 65(16) 2461-2483
- 6 Hofmann A F. The enterohepatic circulation of bile acids in mammals: form and functions. Front Biosci. 2009; 14 2584-2598
- 7 Dawson P A, Lan T, Rao A. Bile acid transporters. J Lipid Res. 2009; 50(12) 2340-2357
- 8 Hagenbuch B, Dawson P. The sodium bile salt cotransport family SLC10. Pflugers Arch. 2004; 447(5) 566-570
- 9 Kullak-Ublick G A, Stieger B, Meier P J. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology. 2004; 126(1) 322-342
- 10 Hagenbuch B, Meier P J. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 2004; 447(5) 653-665
- 11 Stieger B, Meier Y, Meier P J. The bile salt export pump. Pflugers Arch. 2007; 453(5) 611-620
- 12 Stieger B. Recent insights into the function and regulation of the bile salt export pump (ABCB11). Curr Opin Lipidol. 2009; 20(3) 176-181
- 13 Reichen J, Paumgartner G. Uptake of bile acids by perfused rat liver. Am J Physiol. 1976; 231(3) 734-742
- 14 Oude Elferink R P, Paulusma C C. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch. 2007; 453(5) 601-610
- 15 Small D M. Role of ABC transporters in secretion of cholesterol from liver into bile. Proc Natl Acad Sci U S A. 2003; 100(1) 4-6
- 16 Oude Elferink R P, Paulusma C C, Groen A K. Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases. Gastroenterology. 2006; 130(3) 908-925
- 17 Hazard S E, Patel S B. Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflugers Arch. 2007; 453(5) 745-752
- 18 Alnouti Y. Bile acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol Sci. 2009; 108(2) 225-246
- 19 Zollner G, Trauner M. Molecular mechanisms of cholestasis. Wien Med Wochenschr. 2006; 156(13-14) 380-385
- 20 Nies A T, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch. 2007; 453(5) 643-659
- 21 Geier A, Wagner M, Dietrich C G, Trauner M. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim Biophys Acta. 2007; 1773(3) 283-308
- 22 Ballatori N, Li N, Fang F, Boyer J L, Christian W V, Hammond C L. OST alpha-OST beta: a key membrane transporter of bile acids and conjugated steroids. Front Biosci. 2009; 14 2829-2844
- 23 Geyer J, Wilke T, Petzinger E. The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn Schmiedebergs Arch Pharmacol. 2006; 372(6) 413-431
- 24 Alrefai W A, Gill R K. Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res. 2007; 24(10) 1803-1823
- 25 Weinman S A. Electrogenicity of Na(+)-coupled bile acid transporters. Yale J Biol Med. 1997; 70(4) 331-340
- 26 Hagenbuch B, Gui C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica. 2008; 38(7-8) 778-801
- 27 Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009; 158(3) 693-705
- 28 Kitamura S, Maeda K, Wang Y, Sugiyama Y. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos. 2008; 36(10) 2014-2023
- 29 Link E, Parish S, Armitage J SEARCH Collaborative Group et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med. 2008; 359(8) 789-799
- 30 Satlin L M, Amin V, Wolkoff A W. Organic anion transporting polypeptide mediates organic anion/HCO3- exchange. J Biol Chem. 1997; 272(42) 26340-26345
- 31 Li L, Lee T K, Meier P J, Ballatori N. Identification of glutathione as a driving force and leukotriene C4 as a substrate for OATP1, the hepatic sinusoidal organic solute transporter. J Biol Chem. 1998; 273(26) 16184-16191
- 32 Li L, Meier P J, Ballatori N. OATP2 mediates bidirectional organic solute transport: a role for intracellular glutathione. Mol Pharmacol. 2000; 58(2) 335-340
- 33 Briz O, Romero M R, Martinez-Becerra P et al.. OATP8/1B3-mediated cotransport of bile acids and glutathione: an export pathway for organic anions from hepatocytes?. J Biol Chem. 2006; 281(41) 30326-30335
- 34 Leuthold S, Hagenbuch B, Mohebbi N, Wagner C A, Meier P J, Stieger B. Mechanisms of pH-gradient driven transport mediated by organic anion polypeptide transporters. Am J Physiol Cell Physiol. 2009; 296(3) C570-C582
- 35 Zheng H X, Huang Y, Frassetto L A, Benet L Z. Elucidating rifampin's inducing and inhibiting effects on glyburide pharmacokinetics and blood glucose in healthy volunteers: unmasking the differential effects of enzyme induction and transporter inhibition for a drug and its primary metabolite. Clin Pharmacol Ther. 2009; 85(1) 78-85
- 36 Kellner H M, Christ O, Rupp W, Heptner W. [Resorption, distribution and excretion after administration of 14C-labelled HB 419 in rabbits, rats and dogs]. Arzneimittelforschung. 1969; 19(8, Suppl) 1388-1400
- 37 Stieger B, Fattinger K, Madon J, Kullak-Ublick G A, Meier P J. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology. 2000; 118(2) 422-430
- 38 Hayashi H, Takada T, Suzuki H, Onuki R, Hofmann A F, Sugiyama Y. Transport by vesicles of glycine- and taurine-conjugated bile salts and taurolithocholate 3-sulfate: a comparison of human BSEP with rat Bsep. Biochim Biophys Acta. 2005; 1738(1-3) 54-62
- 39 Gerloff T, Stieger B, Hagenbuch B et al.. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem. 1998; 273(16) 10046-10050
- 40 Carlton V E, Harris B Z, Puffenberger E G et al.. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet. 2003; 34(1) 91-96
- 41 Stieger B, O'Neill B, Meier P J. ATP-dependent bile-salt transport in canalicular rat liver plasma-membrane vesicles. Biochem J. 1992; 284(Pt 1) 67-74
- 42 Strautnieks S S, Bull L N, Knisely A S et al.. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet. 1998; 20(3) 233-238
- 43 Jansen P LM, Strautnieks S S, Jacquemin E et al.. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology. 1999; 117(6) 1370-1379
- 44 Byrne J A, Strautnieks S S, Mieli-Vergani G, Higgins C F, Linton K J, Thompson R J. The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology. 2002; 123(5) 1649-1658
- 45 Noé J, Stieger B, Meier P J. Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology. 2002; 123(5) 1659-1666
- 46 Stieger B. Role of the bile salt export pump, BSEP, in acquired forms of cholestasis. Drug Metab Rev. 2009; , December 29 (Epub adhead of print)
- 47 Akita H, Suzuki H, Ito K et al.. Characterization of bile acid transport mediated by multidrug resistance associated protein 2 and bile salt export pump. Biochim Biophys Acta. 2001; 1511(1) 7-16
- 48 Vallejo M, Briz O, Serrano M A, Monte M J, Marin J J. Potential role of trans-inhibition of the bile salt export pump by progesterone metabolites in the etiopathogenesis of intrahepatic cholestasis of pregnancy. J Hepatol. 2006; 44(6) 1150-1157
- 49 Huang L, Smit J W, Meijer D K, Vore M. Mrp2 is essential for estradiol-17beta(beta-D-glucuronide)-induced cholestasis in rats. Hepatology. 2000; 32(1) 66-72
- 50 Gonzalez M C, Reyes H, Arrese M et al.. Intrahepatic cholestasis of pregnancy in twin pregnancies. J Hepatol. 1989; 9(1) 84-90
- 51 Reyes H, Sjövall J. Bile acids and progesterone metabolites in intrahepatic cholestasis of pregnancy. Ann Med. 2000; 32(2) 94-106
- 52 Pusl T, Beuers U. Intrahepatic cholestasis of pregnancy. Orphanet J Rare Dis. 2007; 2 26
- 53 Hay J E. Liver disease in pregnancy. Hepatology. 2008; 47(3) 1067-1076
- 54 Geenes V, Williamson C. Intrahepatic cholestasis of pregnancy. World J Gastroenterol. 2009; 15(17) 2049-2066
- 55 Gonzales E, Davit-Spraul A, Baussan C, Buffet C, Maurice M, Jacquemin E. Liver diseases related to MDR3 (ABCB4) gene deficiency. Front Biosci. 2009; 14 4242-4256
- 56 Kenyon A P, Piercy C N, Girling J, Williamson C, Tribe R M, Shennan A H. Obstetric cholestasis, outcome with active management: a series of 70 cases. BJOG. 2002; 109(3) 282-288
- 57 Jacquemin E, De Vree J M, Cresteil D et al.. The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood. Gastroenterology. 2001; 120(6) 1448-1458
- 58 Bacq Y, Sapey T, Bréchot M C, Pierre F, Fignon A, Dubois F. Intrahepatic cholestasis of pregnancy: a French prospective study. Hepatology. 1997; 26(2) 358-364
- 59 Arrese M, Reyes H. Intrahepatic cholestasis of pregnancy: a past and present riddle. Ann Hepatol. 2006; 5(3) 202-205
- 60 Lammert F, Marschall H U, Glantz A, Matern S. Intrahepatic cholestasis of pregnancy: molecular pathogenesis, diagnosis and management. J Hepatol. 2000; 33(6) 1012-1021
- 61 Heikkinen J, Mäentausta O, Ylöstalo P, Jänne O. Changes in serum bile acid concentrations during normal pregnancy, in patients with intrahepatic cholestasis of pregnancy and in pregnant women with itching. Br J Obstet Gynaecol. 1981; 88(3) 240-245
- 62 Lunzer M, Barnes P, Byth K, O'Halloran M. Serum bile acid concentrations during pregnancy and their relationship to obstetric cholestasis. Gastroenterology. 1986; 91(4) 825-829
- 63 Meng L J, Reyes H, Axelson M et al.. Progesterone metabolites and bile acids in serum of patients with intrahepatic cholestasis of pregnancy: effect of ursodeoxycholic acid therapy. Hepatology. 1997; 26(6) 1573-1579
- 64 Meng L J, Reyes H, Palma J, Hernandez I, Ribalta J, Sjövall J. Profiles of bile acids and progesterone metabolites in the urine and serum of women with intrahepatic cholestasis of pregnancy. J Hepatol. 1997; 27(2) 346-357
- 65 Meng L J, Reyes H, Palma J, Hernandez I, Ribalta J, Sjövall J. Effects of ursodeoxycholic acid on conjugated bile acids and progesterone metabolites in serum and urine of patients with intrahepatic cholestasis of pregnancy. J Hepatol. 1997; 27(6) 1029-1040
- 66 Pauli-Magnus C, Lang T, Meier Y et al.. Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy. Pharmacogenetics. 2004; 14(2) 91-102
- 67 Jacquemin E. Role of multidrug resistance 3 deficiency in pediatric and adult liver disease: one gene for three diseases. Semin Liver Dis. 2001; 21(4) 551-562
- 68 Kreek M J. Female sex steroids and cholestasis. Semin Liver Dis. 1987; 7(1) 8-23
- 69 Reyes H, Simon F R. Intrahepatic cholestasis of pregnancy: an estrogen-related disease. Semin Liver Dis. 1993; 13(3) 289-301
- 70 Laatikainen T, Karjalainen O. Exertion of progesterone metabolites in urine and bile of pregnant women with intrahepatic cholestasis. J Steroid Biochem. 1973; 4(6) 641-648
- 71 Lindberg M C. Hepatobiliary complications of oral contraceptives. J Gen Intern Med. 1992; 7(2) 199-209
- 72 Meyers M, Slikker W, Pascoe G, Vore M. Characterization of cholestasis induced by estradiol-17 beta-D-glucuronide in the rat. J Pharmacol Exp Ther. 1980; 214(1) 87-93
- 73 Bossard R, Stieger B, O'Neill B, Fricker G, Meier P J. Ethinylestradiol treatment induces multiple canalicular membrane transport alterations in rat liver. J Clin Invest. 1993; 91(6) 2714-2720
- 74 Madon J, Eckhardt U, Gerloff T, Stieger B, Meier P J. Functional expression of the rat liver canalicular isoform of the multidrug resistance-associated protein. FEBS Lett. 1997; 406(1-2) 75-78
- 75 Simon F R, Fortune J, Iwahashi M, Gartung C, Wolkoff A, Sutherland E. Ethinyl estradiol cholestasis involves alterations in expression of liver sinusoidal transporters. Am J Physiol. 1996; 271(6 Pt 1) G1043-G1052
- 76 Micheline D, Emmanuel J, Serge E. Effect of ursodeoxycholic acid on the expression of the hepatocellular bile acid transporters (Ntcp and bsep) in rats with estrogen-induced cholestasis. J Pediatr Gastroenterol Nutr. 2002; 35(2) 185-191
- 77 Geier A, Dietrich C G, Gerloff T et al.. Regulation of basolateral organic anion transporters in ethinylestradiol-induced cholestasis in the rat. Biochim Biophys Acta. 2003; 1609(1) 87-94
- 78 Lee J M, Trauner M, Soroka C J, Stieger B, Meier P J, Boyer J L. Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. Gastroenterology. 2000; 118(1) 163-172
- 79 Carreras F I, Lehmann G L, Ferri D, Tioni M F, Calamita G, Marinelli R A. Defective hepatocyte aquaporin-8 expression and reduced canalicular membrane water permeability in estrogen-induced cholestasis. Am J Physiol Gastrointest Liver Physiol. 2007; 292(3) G905-G912
- 80 Kamisako T, Ogawa H. Alteration of the expression of adenosine triphosphate-binding cassette transporters associated with bile acid and cholesterol transport in the rat liver and intestine during cholestasis. J Gastroenterol Hepatol. 2005; 20(9) 1429-1434
- 81 Ruiz M L, Villanueva S S, Luquita M G, Vore M, Mottino A D, Catania V A. Ethynylestradiol increases expression and activity of rat liver MRP3. Drug Metab Dispos. 2006; 34(6) 1030-1034
- 82 Yamamoto Y, Moore R, Hess H A et al.. Estrogen receptor alpha mediates 17alpha-ethynylestradiol causing hepatotoxicity. J Biol Chem. 2006; 281(24) 16625-16631
- 83 Barth A, Klinger G, Rost M. Influence of ethinyloestradiol propanolsulphonate on serum bile acids in healthy volunteers. Exp Toxicol Pathol. 2003; 54(5-6) 381-386
- 84 Koopen N R, Wolters H, Havinga R et al.. Impaired activity of the bile canalicular organic anion transporter (Mrp2/cmoat) is not the main cause of ethinylestradiol-induced cholestasis in the rat. Hepatology. 1998; 27(2) 537-545
- 85 Mottino A D, Cao J, Veggi L M, Crocenzi F, Roma M G, Vore M. Altered localization and activity of canalicular Mrp2 in estradiol-17beta-D-glucuronide-induced cholestasis. Hepatology. 2002; 35(6) 1409-1419
- 86 Crocenzi F A, Mottino A D, Cao J et al.. Estradiol-17beta-D-glucuronide induces endocytic internalization of Bsep in rats. Am J Physiol Gastrointest Liver Physiol. 2003; 285(2) G449-G459
- 87 Roma M G, Crocenzi F A, Mottino A D. Dynamic localization of hepatocellular transporters in health and disease. World J Gastroenterol. 2008; 14(44) 6786-6801
- 88 Crocenzi F A, Sánchez Pozzi E J, Ruiz M L et al.. Ca(2+)-dependent protein kinase C isoforms are critical to estradiol 17beta-D-glucuronide-induced cholestasis in the rat. Hepatology. 2008; 48(6) 1885-1895
- 89 Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004; 34(8) 513-554
- 90 Maravelias C, Dona A, Stefanidou M, Spiliopoulou C. Adverse effects of anabolic steroids in athletes. A constant threat. Toxicol Lett. 2005; 158(3) 167-175
- 91 Parkinson A B, Evans N A. Anabolic androgenic steroids: a survey of 500 users. Med Sci Sports Exerc. 2006; 38(4) 644-651
- 92 Ishak K G. Hepatic lesions caused by anabolic and contraceptive steroids. Semin Liver Dis. 1981; 1(2) 116-128
- 93 Gurakar A, Caraceni P, Fagiuoli S, Van Thiel D H. Androgenic/anabolic steroid-induced intrahepatic cholestasis: a review with four additional case reports. J Okla State Med Assoc. 1994; 87(9) 399-404
- 94 Nasr J, Ahmad J. Severe cholestasis and renal failure associated with the use of the designer steroid Superdrol (methasteron): a case report and literature review. Dig Dis Sci. 2009; 54(5) 1144-1146
- 95 Krishnan P V, Feng Z Z, Gordon S C. Prolonged intrahepatic cholestasis and renal failure secondary to anabolic androgenic steroid-enriched dietary supplements. J Clin Gastroenterol. 2009; 43(7) 672-675
- 96 Bellmann R, Feistritzer C, Zoller H et al.. Treatment of intractable pruritus in drug induced cholestasis with albumin dialysis: a report of two cases. ASAIO J. 2004; 50(4) 387-391
- 97 Phillips M J, Oda M, Funatsu K. Evidence for microfilament involvement in norethandrolone-induced intrahepatic cholestasis. Am J Pathol. 1978; 93(3) 729-744
- 98 Jacquemin E, Cresteil D, Manouvrier S, Boute O, Hadchouel M. Heterozygous non-sense mutation of the MDR3 gene in familial intrahepatic cholestasis of pregnancy. Lancet. 1999; 353(9148) 210-211
- 99 Wasmuth H E, Glantz A, Keppeler H et al.. Intrahepatic cholestasis of pregnancy: the severe form is associated with common variants of the hepatobiliary phospholipid transporter ABCB4 gene. Gut. 2007; 56(2) 265-270
- 100 Floreani A, Carderi I, Variola A, Rizzotto E R, Nicol J, Bergasa N V. A novel multidrug-resistance protein 2 gene mutation identifies a subgroup of patients with primary biliary cirrhosis and pruritus. Hepatology. 2006; 43(5) 1152-1154
- 101 Schneider G, Paus T C, Kullak-Ublick G A et al.. Linkage between a new splicing site mutation in the MDR3 alias ABCB4 gene and intrahepatic cholestasis of pregnancy. Hepatology. 2007; 45(1) 150-158
- 102 Eloranta M L, Heiskanen J T, Hiltunen M J, Mannermaa A J, Punnonen K R, Heinonen S T. Multidrug resistance 3 gene mutation 1712delT and estrogen receptor alpha gene polymorphisms in Finnish women with obstetric cholestasis. Eur J Obstet Gynecol Reprod Biol. 2002; 105(2) 132-135
- 103 Dixon P H, Weerasekera N, Linton K J et al.. Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy: evidence for a defect in protein trafficking. Hum Mol Genet. 2000; 9(8) 1209-1217
- 104 Meier Y, Zodan T, Lang C et al.. Increased susceptibility for intrahepatic cholestasis of pregnancy and contraceptive-induced cholestasis in carriers of the 1331T> C polymorphism in the bile salt export pump. World J Gastroenterol. 2008; 14(1) 38-45
- 105 Dixon P H, van Mil S W, Chambers J et al.. Contribution of variant alleles of ABCB11 to susceptibility to intrahepatic cholestasis of pregnancy. Gut. 2009; 58(4) 537-544
- 106 Noe J, Kullak-Ublick G A, Jochum W et al.. Impaired expression and function of the bile salt export pump due to three novel ABCB11 mutations in intrahepatic cholestasis. J Hepatol. 2005; 43(3) 536-543
- 107 Meier Y, Pauli-Magnus C, Zanger U M et al.. Interindividual variability of canalicular ATP-binding-cassette (ABC)-transporter expression in human liver. Hepatology. 2006; 44(1) 62-74
- 108 Byrne J A, Strautnieks S S, Ihrke G et al.. Missense mutations and single nucleotide polymorphisms in ABCB11 impair bile salt export pump processing and function or disrupt pre-messenger RNA splicing. Hepatology. 2009; 49(2) 553-567
- 109 Ho R H, Leake B F, Kilkenny D M et al.. Polymorphic variants in the human bile salt export pump (BSEP; ABCB11): functional characterization and interindividual variability. Pharmacogenet Genomics. 2010; 20(1) 45-57
- 110 Van Mil S W, Milona A, Dixon P H et al.. Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. Gastroenterology. 2007; 133(2) 507-516
- 111 Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf D J, Suchy F J. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem. 2001; 276(31) 28857-28865
- 112 Huang L, Zhao A, Lew J L et al.. Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J Biol Chem. 2003; 278(51) 51085-51090
- 113 Keitel V, Vogt C, Häussinger D, Kubitz R. Combined mutations of canalicular transporter proteins cause severe intrahepatic cholestasis of pregnancy. Gastroenterology. 2006; 131(2) 624-629
- 114 Zimmer V, Müllenbach R, Simon E, Bartz C, Matern S, Lammert F. Combined functional variants of hepatobiliary transporters and FXR aggravate intrahepatic cholestasis of pregnancy. Liver Int. 2009; 29(8) 1286-1288
- 115 Lang C, Meier Y, Stieger B et al.. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics. 2007; 17(1) 47-60
- 116 Lee W M. Drug-induced hepatotoxicity. N Engl J Med. 2003; 349(5) 474-485
- 117 Meier Y, Cavallaro M, Roos M et al.. Incidence of drug-induced liver injury in medical inpatients. Eur J Clin Pharmacol. 2005; 61(2) 135-143
- 118 Shapiro M A, Lewis J H. Causality assessment of drug-induced hepatotoxicity: promises and pitfalls. Clin Liver Dis. 2007; 11(3) 477-505, v , v
- 119 Bleibel W, Kim S, D'Silva K, Lemmer E R. Drug-induced liver injury: review article. Dig Dis Sci. 2007; 52(10) 2463-2471
- 120 Schuster D, Laggner C, Langer T. Why drugs fail—a study on side effects in new chemical entities. Curr Pharm Des. 2005; 11(27) 3545-3559
- 121 Smith D A, Schmid E F. Drug withdrawals and the lessons within. Curr Opin Drug Discov Devel. 2006; 9(1) 38-46
- 122 Abboud G, Kaplowitz N. Drug-induced liver injury. Drug Saf. 2007; 30(4) 277-294
- 123 Ramachandran R, Kakar S. Histological patterns in drug-induced liver disease. J Clin Pathol. 2009; 62(6) 481-492
- 124 Chitturi S, George J. Hepatotoxicity of commonly used drugs: nonsteroidal anti-inflammatory drugs, antihypertensives, antidiabetic agents, anticonvulsants, lipid-lowering agents, psychotropic drugs. Semin Liver Dis. 2002; 22(2) 169-183
- 125 Bell L N, Chalasani N. Epidemiology of idiosyncratic drug-induced liver injury. Semin Liver Dis. 2009; 29(4) 337-347
- 126 Liss G, Lewis J H. Drug-induced liver injury: what was new in 2008?. Expert Opin Drug Metab Toxicol. 2009; 5(8) 843-860
- 127 Bénichou C. Criteria of drug-induced liver disorders. Report of an international consensus meeting. J Hepatol. 1990; 11(2) 272-276
- 128 Pizzagalli F, Varga Z, Huber R D, Folkers G, Meier P J, St-Pierre M V. Identification of steroid sulfate transport processes in the human mammary gland. J Clin Endocrinol Metab. 2003; 88(8) 3902-3912
- 129 Grube M, Köck K, Karner S et al.. Modification of OATP2B1-mediated transport by steroid hormones. Mol Pharmacol. 2006; 70(5) 1735-1741
- 130 Gui C, Miao Y, Thompson L et al.. Effect of pregnane X receptor ligands on transport mediated by human OATP1B1 and OATP1B3. Eur J Pharmacol. 2008; 584(1) 57-65
- 131 Sugiyama D, Kusuhara H, Shitara Y, Abe T, Sugiyama Y. Effect of 17 beta-estradiol-D-17 beta-glucuronide on the rat organic anion transporting polypeptide 2-mediated transport differs depending on substrates. Drug Metab Dispos. 2002; 30(2) 220-223
- 132 Arias I M. Cyclosporin, the biology of the bile canaliculus, and cholestasis. Gastroenterology. 1993; 104(5) 1558-1560
- 133 Böhme M, Müller M, Leier I, Jedlitschky G, Keppler D. Cholestasis caused by inhibition of the adenosine triphosphate-dependent bile salt transport in rat liver. Gastroenterology. 1994; 107(1) 255-265
- 134 Krähenbühl S, Talos C, Fischer S, Reichen J. Toxicity of bile acids on the electron transport chain of isolated rat liver mitochondria. Hepatology. 1994; 19(2) 471-479
- 135 Treiber A, Schneiter R, Häusler S, Stieger B. Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab Dispos. 2007; 35(8) 1400-1407
- 136 Fattinger K, Funk C, Pantze M et al.. The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin Pharmacol Ther. 2001; 69(4) 223-231
- 137 Fouassier L, Kinnman N, Lefèvre G et al.. Contribution of mrp2 in alterations of canalicular bile formation by the endothelin antagonist bosentan. J Hepatol. 2002; 37(2) 184-191
- 138 Mano Y, Usui T, Kamimura H. Effects of bosentan, an endothelin receptor antagonist, on bile salt export pump and multidrug resistance-associated protein 2. Biopharm Drug Dispos. 2007; 28(1) 13-18
- 139 Borst P, Zelcer N, van de Wetering K, Poolman B. On the putative co-transport of drugs by multidrug resistance proteins. FEBS Lett. 2006; 580(4) 1085-1093
- 140 Meier P J. Canalicular bile formation: beyond single transporter functions. J Hepatol. 2002; 37(2) 272-273
- 141 Takada T, Weiss H M, Kretz O, Gross G, Sugiyama Y. Hepatic transport of PKI166, an epidermal growth factor receptor kinase inhibitor of the pyrrolo-pyrimidine class, and its main metabolite, ACU154. Drug Metab Dispos. 2004; 32(11) 1272-1278
- 142 Masubuchi Y. Metabolic and non-metabolic factors determining troglitazone hepatotoxicity: a review. Drug Metab Pharmacokinet. 2006; 21(5) 347-356
- 143 Julie N L, Julie I M, Kende A I, Wilson G L. Mitochondrial dysfunction and delayed hepatotoxicity: another lesson from troglitazone. Diabetologia. 2008; 51(11) 2108-2116
- 144 Preininger K, Stingl H, Englisch R et al.. Acute troglitazone action in isolated perfused rat liver. Br J Pharmacol. 1999; 126(1) 372-378
- 145 Funk C, Ponelle C, Scheuermann G, Pantze M. Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity: in vivo and in vitro interaction at the canalicular bile salt export pump (Bsep) in the rat. Mol Pharmacol. 2001; 59(3) 627-635
- 146 Marion T L, Leslie E M, Brouwer K L. Use of sandwich-cultured hepatocytes to evaluate impaired bile acid transport as a mechanism of drug-induced hepatotoxicity. Mol Pharm. 2007; 4(6) 911-918
- 147 Snow K L, Moseley R H. Effect of thiazolidinediones on bile acid transport in rat liver. Life Sci. 2007; 80(8) 732-740
- 148 Daly A K, Donaldson P T, Bhatnagar P DILIGEN Study et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 2009; 41(7) 816-819
- 149 Daly A K, Day C P. Genetic association studies in drug-induced liver injury. Semin Liver Dis. 2009; 29(4) 400-411
- 150 Pauli-Magnus C, Meier P J. Hepatobiliary transporters and drug-induced cholestasis. Hepatology. 2006; 44(4) 778-787
- 151 Tirona R G, Leake B F, Merino G, Kim R B. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem. 2001; 276(38) 35669-35675
- 152 Nishizato Y, Ieiri I, Suzuki H et al.. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther. 2003; 73(6) 554-565
- 153 Mwinyi J, Johne A, Bauer S, Roots I, Gerloff T. Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin Pharmacol Ther. 2004; 75(5) 415-421
- 154 Niemi M, Schaeffeler E, Lang T et al.. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics. 2004; 14(7) 429-440
- 155 Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I. Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos. 2005; 33(3) 434-439
- 156 Ho R H, Tirona R G, Leake B F et al.. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology. 2006; 130(6) 1793-1806
Peter J Meier-AbtM.D.
University Basel, Petersplatz 35
4003 Basel, Switzerland
Email: peter.meier-abt@unibas.ch