Horm Metab Res 2010; 42(10): 718-724
DOI: 10.1055/s-0030-1255035
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Thyroid Hormone Receptor α1 Downregulation in Postischemic Heart Failure Progression: The Potential Role of Tissue Hypothyroidism

C. Pantos1 , I. Mourouzis1 , G. Galanopoulos1 , M. Gavra1 , P. Perimenis1 , D. Spanou1 , D. V. Cokkinos2 , 3
  • 1Department of Pharmacology, University of Athens, Goudi, Athens, Greece
  • 2Onassis Cardiac Surgery Center, Kallithea, Athens, Greece
  • 3Biomedical Research Foundation, Academy of Athens, Athens, Greece
Further Information

Publication History

received 18.03.2010

accepted 04.05.2010

Publication Date:
17 June 2010 (online)

Abstract

Thyroid hormone (TH) signaling is altered in response to various stresses including myocardial ischemia. The present study investigated potential implication of TH signaling in the pathophysiology of postischemic remodeling. Acute myocardial infarction was induced in rats by coronary artery ligation (AMI). After 34 weeks, 6 animals were on congestive heart failure (CHF) as indicated by measurements in lung and right ventricular weight. 7 animals were in compensated state (Non-CHF) and 8 sham-operated animals (SHAM) served as controls. Progression to congestive heart failure was characterized by marked decrease in EF% and all other functional echocardiographic parameters. Furthermore, β-MHC expression was significantly increased in CHF. A distinct pattern of thyroid hormone receptor (TR) expression was observed in the course of postischemic remodeling; TRα1 was upregulated and TRβ1 was downregulated in Non-CHF, and TRα1 expression was markedly decreased during the transition from Non-CHF to CHF resulting in tissue hypothyroidism. Circulating T3 and T4 remained unchanged. This response was associated with marked decrease in mTOR activation. A potential link between mTOR and TRα1 expression was shown in a neonatal cardiomyocytes model of PE (phenylephrine)-induced pathological growth. Phenylephrine increased the expression of TRα1 in nucleus and this response was abrogated in the case of mTOR inhibition by rapamycin. In conclusion, progression to congestive heart failure after myocardial infarction is associated with suppressed expression of TRα1 and results in tissue hypothyroidism. This process may, at least in part, be mTOR dependent.

References

  • 1 Beckett G, Warner M. Mechanisms behind the non-thyroidal illness syndrome: an update.  J Endocrinol. 2010;  205 1-13
  • 2 Moura EG, Santos RS, Lisboa PC, Alves SB, Bonomo IT, Fagundes AT, Oliveira E, Passos MC. Thyroid function and body weight programming by neonatal hyperthyroidism in rats – the role of leptin and deiodinase activities.  Horm Metab Res. 2008;  40 1-7
  • 3 Friberg L, Werner S, Eggertsen G, Ahnve S. Rapid down-regulation of thyroid hormones in acute myocardial infarction: is it cardioprotective in patients with angina?.  Arch Intern Med. 2002;  162 1388-1394
  • 4 Iervasi G, Pingitore A, Landi P, Raciti M, Ripoli A, Scarlattini M, L’Abbate A, Donato L. Low-T3 syndrome: a strong prognostic predictor of death in patients with heart disease.  Circulation. 2003;  107 708-713
  • 5 Pantos C, Dritsas A, Mourouzis I, Dimopoulos A, Karatasakis G, Athanassopoulos G, Mavrogeni S, Manginas A, Cokkinos DV. Thyroid hormone is a critical determinant of myocardial performance in patients with heart failure: potential therapeutic implications.  Eur J Endocrinol. 2007;  157 515-520
  • 6 Pingitore A, Landi P, Taddei MC, Ripoli A, L’Abbate A, Iervasi G. Triiodothyronine levels for risk stratification of patients with chronic heart failure.  Am J Med. 2005;  118 132-136
  • 7 Pantos C, Mourouzis I, Xinaris C, Papadopoulou-Daifoti Z, Cokkinos D. Thyroid hormone and “cardiac metamorphosis”: Potential therapeutic implications.  Pharmacol Ther. 2008;  118 277-294
  • 8 Flamant F, Samarut J. Thyroid hormone receptors: lessons from knockout and knock-in mutant mice.  Trends Endocrinol Metab. 2003;  14 85-90
  • 9 Kinugawa K, Yonekura K, Ribeiro RC, Eto Y, Aoyagi T, Baxter JD, Camacho SA, Bristow MR, Long CS, Simpson PC. Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy.  Circ Res. 2001;  89 591-598
  • 10 Mansen A, Yu F, Forrest D, Larsson L, Vennstrom B. TRs have common and isoform-specific functions in regulation of the cardiac myosin heavy chain genes.  Mol Endocrinol. 2001;  15 2106-2114
  • 11 Wikstrom L, Johansson C, Salto C, Barlow C, Campos Barros A, Baas F, Forrest D, Thoren P, Vennstrom B. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1.  Embo J. 1998;  17 455-461
  • 12 Trost SU, Swanson E, Gloss B, Wang-Iverson DB, Zhang H, Volodarsky T, Grover GJ, Baxter JD, Chiellini G, Scanlan TS, Dillmann WH. The thyroid hormone receptor-beta-selective agonist GC-1 differentially affects plasma lipids and cardiac activity.  Endocrinology. 2000;  141 3057-3064
  • 13 Pantos C, Mourouzis I, Saranteas T, Paizis I, Xinaris C, Malliopoulou V, Cokkinos DV. Thyroid hormone receptors alpha1 and beta1 are downregulated in the post-infarcted rat heart: consequences on the response to ischaemia-reperfusion.  Basic Res Cardiol. 2005;  100 422-432
  • 14 Pantos C, Mourouzis I, Markakis K, Dimopoulos A, Xinaris C, Kokkinos AD, Panagiotou M, Cokkinos DV. Thyroid hormone attenuates cardiac remodeling and improves hemodynamics early after acute myocardial infarction in rats.  Eur J Cardiothorac Surg. 2007;  32 333-339
  • 15 Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV. Long-term thyroid hormone administration re-shapes left ventricular chamber and improves cardiac function after myocardial infarction in rats.  Basic Res Cardiol. 2008;  103 308-318
  • 16 Garcia MJ, Rodriguez L, Ares M, Griffin BP, Klein AL, Stewart WJ, Thomas JD. Myocardial wall velocity assessment by pulsed Doppler tissue imaging: characteristic findings in normal subjects.  Am Heart J. 1996;  132 648-656
  • 17 Dorn 2nd GW. The fuzzy logic of physiological cardiac hypertrophy.  Hypertension. 2007;  49 962-970
  • 18 Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle.  J Clin Invest. 1975;  56 56-64
  • 19 Ebel D, Toma O, Appler S, Baumann K, Frassdorf J, Preckel B, Rosen P, Schlack W, Weber NC. Ischemic preconditioning phosphorylates mitogen-activated kinases and heat shock protein 27 in the diabetic rat heart.  Horm Metab Res. 2009;  41 10-15
  • 20 Reiser PJ, Kline WO. Electrophoretic separation and quantitation of cardiac myosin heavy chain isoforms in eight mammalian species.  Am J Physiol. 1998;  274 H1048-H1053
  • 21 Pantos C, Mourouzis I, Xinaris C, Kokkinos AD, Markakis K, Dimopoulos A, Panagiotou M, Saranteas T, Kostopanagiotou G, Cokkinos DV. Time-dependent changes in the expression of thyroid hormone receptor {alpha}1 in the myocardium after acute myocardial infarction: possible implications in cardiac remodelling.  Eur J Endocrinol. 2007;  156 415-424
  • 22 Pantos C, Xinaris C, Mourouzis I, Perimenis P, Politi E, Spanou D, Cokkinos DV. Thyroid hormone receptor alpha 1: a switch to cardiac cell “metamorphosis”?.  J Physiol Pharmacol. 2008;  59 253-269
  • 23 Kinugawa K, Jeong MY, Bristow MR, Long CS. Thyroid hormone induces cardiac myocyte hypertrophy in a thyroid hormone receptor alpha1-specific manner that requires TAK1 and p38 mitogen-activated protein kinase.  Mol Endocrinol. 2005;  19 1618-1628
  • 24 Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF, Kitsis RN, Molkentin JD. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice.  Embo J. 2000;  19 6341-6350
  • 25 Hall MN. mTOR-what does it do?.  Transplant Proc. 2008;  40 S5-S8
  • 26 Lorenz K, Schmitt JP, Vidal M, Lohse MJ. Cardiac hypertrophy: targeting Raf/MEK/ERK1/2-signaling.  Int J Biochem Cell Biol. 2009;  41 2351-2355
  • 27 Proud CG. Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy.  Cardiovasc Res. 2004;  63 403-413
  • 28 Li XM, Ma YT, Yang YN, Liu F, Chen BD, Han W, Zhang JF, Gao XM. Downregulation of survival signalling pathways and increased apoptosis in the transition of pressure overload-induced cardiac hypertrophy to heart failure.  Clin Exp Pharmacol Physiol. 2009;  36 1054-1061
  • 29 Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL, Condorelli G, Ellingsen O. Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy.  J Cell Physiol. 2008;  214 316-321
  • 30 Tang YD, Kuzman JA, Said S, Anderson BE, Wang X, Gerdes AM. Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction.  Circulation. 2005;  112 3122-3130
  • 31 Pantos C, Mourouzis I, Tsagoulis N, Markakis K, Galanopoulos G, Roukounakis N, Perimenis P, Liappas A, Cokkinos DV. Thyroid hormone at supra-physiological dose optimizes cardiac geometry and improves cardiac function in rats with old myocardial infarction.  J Physiol Pharmacol. 2009;  60 49-56
  • 32 Chen YF, Kobayashi S, Chen J, Redetzke RA, Said S, Liang Q, Gerdes AM. Short term triiodo-l-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats.  J Mol Cell Cardiol. 2008;  44 180-187
  • 33 Ojamaa K, Kenessey A, Shenoy R, Klein I. Thyroid hormone metabolism and cardiac gene expression after acute myocardial infarction in the rat.  Am J Physiol Endocrinol Metab. 2000;  279 E1319-E1324
  • 34 Pingitore A, Galli E, Barison A, Iervasi A, Scarlattini M, Nucci D, L’Abbate A, Mariotti R, Iervasi G. Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study.  J Clin Endocrinol Metab. 2008;  93 1351-1358

Correspondence

C. Pantos

Department of Pharmacology

University of Athens

Mikras Asias Ave.75

11527 Goudi

Athens

Greece

Phone: +30/210/746 2560

Fax: +30/210/746 2559

Email: cpantos@med.uoa.gr