Abstract
Deceptively simple as the structure may appear, there is no single
general method by which to synthesize the vinyl (enol) ether functionality.
However, there exists a diverse array of complementary methods by
which this functionality has been achieved. This review presents
the scope and limitations of these methods according to reaction
type, specifically via ether modifications, elimination reactions,
carbonyl olefinations, alcohol additions and carbon-oxygen
coupling reactions.
1 Introduction
2 Modification of Ethers
2.1 Vinyl Ether Substrates
2.2 Allyl Ether Substrates
2.3 Acetylenic Ether Substrates
3 Elimination Reactions
3.1 Halide and Pseudohalide Leaving Groups
3.2 Alkoxide and Silyloxide Leaving Groups
3.3 Selenium Oxidation-Elimination
4 Olefination of Carbonyl Substrates
4.1 Phosphorus Reagents
4.2 Silicon Reagents
4.3 Sulfur Reagents
4.4 Metal Carbene Reagents
5 Addition of Alcohols
5.1 Alkyne Substrates
5.2 Dicarbonyl Substrates
6 Carbon-Oxygen Coupling Reactions
6.1 Palladium-Mediated Reactions
6.2 Copper-Mediated Reactions
7 Conclusion
Key words
alkenation - alkenes - enols - ethers - olefination
References
Examples of Danishefsky’s
diene:
1a
Danishefsky S.
Kitahara T.
J. Am. Chem. Soc.
1974,
96:
7807
1b
Danishefsky S.
Acc.
Chem. Res.
1981,
14:
400
1c
Kozmin SA.
Rawal VH.
J.
Org. Chem.
1997,
62:
5252
1d
Amil H.
Kobayashi T.
Terasawa H.
Uneyama K.
Org. Lett.
2001,
3:
3103
1e
Josephsohn NS.
Snapper ML.
Hoveyda AH.
J. Am. Chem. Soc.
2003,
125:
4018
1f
Han G.
LaPorte MG.
Folmer JJ.
Werner KM.
Weinreb SM.
J. Org. Chem.
2000,
65:
6293
2 Anniversary review of the Diels-Alder
reaction: Nicolaou KC.
Snyder SA.
Montagnon T.
Vassilikogiannakis G.
Angew. Chem. Int. Ed.
2002,
41:
1668
3
Boger DL.
Ichikawa S.
Jiang H.
J.
Am. Chem. Soc.
2000,
122:
12169
Examples of the Claisen rearrangement
in total synthesis:
4a
Bernardelli P.
Moradei OM.
Friedrich D.
Yang J.
Gallou F.
Dyck BP.
Doskotch RW.
Lange T.
Paquette LA.
J.
Am. Chem. Soc.
2001,
123:
9021
4b
Nicolaou KC.
Li J.
Angew. Chem.
Int. Ed.
2001,
40:
4264
5
Boeckman RK.
Rico Ferreira M.d.R.
Mitchell LH.
Shao P.
J.
Am. Chem. Soc.
2002,
124:
190
6
He W.
Herrick I.
Atesin T.
Caruana P.
Kellenberger C.
Frontier A.
J. Am. Chem. Soc.
2008,
130:
1003
7
Malona J.
Cariou K.
Frontier A.
J.
Am. Chem. Soc.
2009,
131:
7560
8a
Zook HD.
Miller JA.
J.
Org. Chem.
1971,
36:
1112
8b For a recent application
of O-allylation in a total synthesis, see: Schwartz BD.
Denton JR.
Lian Y.
Davies HML.
Williams CM.
J. Am. Chem. Soc.
2009,
131:
8329
9a
Watanabe WH.
Conlon LE.
J. Am. Chem. Soc.
1957,
79:
2828
9b
Yuki H.
Hatada K.
Nagata K.
Kajiyama K.
Bull. Chem. Soc. Jpn.
1969,
3546
10
Okimoto Y.
Sakaguchi S.
Ishii Y.
J.
Am. Chem. Soc.
2002,
124:
1590
11a
Handerson S.
Schlaf M.
Org.
Lett.
2002,
4:
407
11b
Bosch M.
Schlaf M.
J. Org. Chem.
2003,
68:
5225
11c For another example, see: Weintraub PM.
King RC.-H.
J. Org. Chem.
1997,
62:
1560
12
Nakamura A.
Tokunaga M.
Tetrahedron Lett.
2008,
49:
3729
13
Dujardin G.
Rossignol S.
Brown E.
Tetrahedron
Lett.
1995,
36:
1653
14
Charbonnier F.
Moyano A.
Green A.
J.
Org. Chem.
1987,
52:
2303
15a
Fuwa H.
Sasaki M.
Org.
Biomol. Chem.
2007,
5:
1849
15b For a related coupling,
see: Fuwa H.
Sasaki M.
Org. Lett.
2008,
10:
2549
16a
Allain L.
Begue JP.
Bonnet-Delpon D.
Bouvet D.
Synthesis
1998,
847
16b For another example, see: Fuwa H.
Noji S.
Sasaki M.
Chem. Lett.
2009,
38:
866
17
Rossi R.
Bellina F.
Carpita A.
Synlett
1996,
356
18
Anderson CM.
Hallberg A.
J. Org. Chem.
1989,
54:
1502
19a
von Schenck H.
Kermark B.
Svensson M.
J. Am. Chem. Soc.
2003,
125:
3503
19b
Mo J.
Xiao J.
Angew. Chem. Int. Ed.
2006,
45:
4152
20a
Hekking KFW.
Moelands MAH.
van Delft FL.
Rutjes FPJT.
J.
Org. Chem.
2006,
71:
6444
20b For another example, see: Ceccon J.
Danoun G.
Greene AE.
Poisson J.-F.
Org.
Biomol. Chem.
2009,
7:
2029
20c For an asymmetric version,
see: Lee A.-L.
Malcolmson SJ.
Puglisi A.
Schrock RR.
Hoveyda AH.
J.
Am. Chem. Soc.
2006,
128:
5153
21a
Iyer K.
Rainer JD.
J.
Am. Chem. Soc.
2007,
129:
12604
21b For another example, see: Nicolaou KC.
Postema MHD.
Claiborne CF.
J.
Am. Chem. Soc.
1996,
118:
1565
21c For a similar tandem process,
see: Roberts SW.
Rainier JD.
Org. Lett.
2007,
9:
2227
22
Giessert AJ.
Snyder L.
Markham J.
Diver ST.
Org. Lett.
2003,
5:
1793
23
Clark JS.
Trevitt GP.
Boyall D.
Stammen B.
Chem. Commun.
1998,
2629
24
Lunazzi L.
Ingold KU.
J. Am. Chem. Soc.
1974,
96:
5560
25
Evans DA.
Andrews GC.
Buckwalter B.
J.
Am. Chem. Soc.
1974,
96:
5561
26
Duval E.
Zoltobroda G.
Langlois Y.
Tetrahedron
Lett.
2000,
41:
337
27
Sageot O.
Monteux D.
Langlois Y.
Tetrahedron
Lett.
1996,
37:
7019
28
Aloui M.
Chambers DJ.
Cumpstey I.
Fairbanks AJ.
Redgrave AJ.
Seward CMP.
Chem.
Eur. J.
2002,
8:
2608
29
Crivello JV.
Kong S.
J. Org. Chem.
1998,
63:
6745
30a
Nelson SG.
Wang K.
J.
Am. Chem. Soc.
2006,
128:
4232
30b See also: Nelson SG.
Bungard CJ.
Wang K.
J. Am. Chem. Soc.
2003,
125:
13000
31a
Schmidt B.
Eur. J. Org. Chem.
2003,
816
31b For more examples, see: Sutton AE.
Seigal BA.
Finnegan DF.
Snapper ML.
J. Am. Chem. Soc.
2002,
124:
13390
32
Sugimura H.
Takei H.
Chem. Lett.
1985,
351
Recent examples of acetylenic ether
synthesis:
33a Ref. 20b.
33b
Sosa JR.
Trudjarian AA.
Minehan TG.
Org. Lett.
2008,
10:
5091
34
Roche C.
Delair P.
Greene AE.
Org.
Lett.
2003,
5:
1741
35
Cabezas JA.
Oehlschlager AC.
Synthesis
1994,
432
36
Andrews IP.
Kwon O.
Tetrahedron Lett.
2008,
49:
7097
37
Mizuno K.
Kimura Y.
Otsuji Y.
Synthesis
1979,
688
38a
Hiersemann M.
Synthesis
2000,
1279
For other examples, see:
38b
Helmboldt H.
Hiersemann M.
Tetrahedron
2003,
59:
4031
38c
Pollex A.
Hiersemann M.
Org. Lett.
2005,
7:
5705
39
Park HG.
Kim DH.
Yoo MS.
Park MK.
Jew SS.
Tetrahedron
Lett.
2000,
41:
4579
40a
McGarvey GJ.
Kimura M.
Kucerovy A.
Tetrahedron Lett.
1985,
26:
1419
40b For a related method,
see: McGarvey GJ.
Bajwa JS.
J. Org. Chem.
1984,
49:
4091
41
Maeda K.
Shinokubo H.
Oshima K.
Utimoto K.
J. Org. Chem.
1996,
61:
2262
42
Rollin P.
Bencomo V.
Sinay P.
Synthesis
1984,
134
43
Lakhrissi M.
Chapleur Y.
Angew. Chem., Int. Ed. Engl.
1996,
35:
750
44
Sabitha G.
Reddy MM.
Srinivas D.
Yadav JS.
Tetrahedron Lett.
1999,
40:
165
45
Tsunoda T.
Takagi H.
Takaba D.
Kaku H.
Ito S.
Tetrahedron
Lett.
2000,
41:
235
46a
Kulkarni M.
Dhondge A.
Borhade A.
Gaikwad D.
Chavhan S.
Shaikh Y.
Nigdale V.
Desai M.
Birhade D.
Shinde M.
Eur.
J. Org. Chem.
2009,
3875
46b For another example, see: Li Y.
Zhang Q.
Wittlin S.
Jin H.-X.
Wu Y.
Tetrahedron
2009,
65:
6972
47
Paquet F.
Sinay P.
J. Am. Chem. Soc.
1984,
106:
8313
48
Kleinbeck F.
Carreira EM.
Angew. Chem. Int.
Ed.
2009,
48:
578
49
Gilbert JC.
Weerasooriya U.
J. Org. Chem.
1983,
48:
448
50
Magnus P.
Roy G.
Organometallics
1982,
1:
553
51
Surprenant S.
Chan WY.
Berthelette C.
Org.
Lett.
2003,
5:
4851
52
Bourdon B.
Corbet M.
Fontaine P.
Goekjian PG.
Gueyrard D.
Tetrahedron
Lett.
2008,
49:
747
53
Kinney WA.
Coghlan MJ.
Paquette LA.
J. Am. Chem. Soc.
1985,
107:
7352
54
Petasis NA.
Bzowej EI.
J. Am. Chem. Soc.
1990,
112:
6392
55
Okazoe T.
Takai K.
Oshima K.
Utimoto K.
J. Org. Chem.
1987,
52:
4410
56
Takeda T.
Shono T.
Ito K.
Sasaki H.
Tsubouchi A.
Tetrahedron
Lett.
2003,
44:
7897
57
Kwon MS.
Woo SK.
Na SW.
Lee E.
Angew. Chem. Int. Ed.
2008,
47:
1733
58
Edwards GL.
Muldoon CA.
Sinclair DJ.
Tetrahedron
1996,
52:
7779
59
Hudrlik PF.
Hudrlik AM.
J. Org. Chem.
1975,
38:
4254
60a
McDonald FE.
Reddy KS.
Diaz Y.
J. Am. Chem. Soc.
2000,
122:
4304
60b
McDonald FE.
Connolly CB.
Gleason MM.
Towne TB.
Treiber KD.
J. Org. Chem.
1993,
58:
6952
60c
McDonald FE.
Bowman JL.
Tetrahedron
Lett.
1996,
37:
4675
60d
McDonald FE.
Chem. Eur. J.
1999,
5:
3103
60e
Alcazar E.
Pletcher JM.
McDonald FE.
Org. Lett.
2004,
6:
3877
61 Unpublished results from this laboratory.
62
Wang Z.
Lin X.
Luck RL.
Gibbons G.
Fang S.
Tetrahedron
2009,
65:
2643
63
Danishefsky SJ.
DeNinno MP.
Chen S.
J.
Am. Chem. Soc.
1988,
110:
3929
64
Banerjee B.
Mandal SK.
Roy SC.
Chem.
Lett.
2006,
35:
16
65
Rossi R.
Bellina F.
Mannina L.
Tetrahedron
1997,
53:
1025
66
Willis MC.
Taylor D.
Gillmore AT.
Chem.
Commun.
2003,
2222
67a
Paul F.
Hartwig JF.
J.
Am. Chem. Soc.
1994,
116:
5969
67b
Guram AS.
Buchwald SL.
J.
Am. Chem. Soc.
1994,
116:
7901
68a
Whitesides GM.
Sadowski JS.
Lilburn J.
J. Am. Chem.
Soc.
1974,
96:
2829
68b
Keegstra M.
Tetrahedron
1992,
48:
2681
69a Ref.
67.
69b For another example see: Wan Z.
Jones CD.
Koenig TM.
Pu YJ.
Mitchell D.
Tetrahedron Lett.
2003,
44:
8257
70
Nordmann G.
Buchwald SL.
J. Am. Chem. Soc.
2003,
125:
4978
71 Initial report using sodium methoxide:
Ref. 69b.
72a
Evans DA.
Katz JL.
West TR.
Tetrahedron Lett.
1998,
39:
2937
72b
Lam PYS.
Clark CG.
Saubern S.
Adams J.
Winters MP.
Chan DMT.
Combs A.
Tetrahedron
Lett.
1998,
39:
2941
72c
Chan DMT.
Monaco KL.
Wang R.-P.
Winters MP.
Tetrahedron Lett.
1998,
39:
2933
72d
Chan DMT.
Lam PYS.
In Boronic
Acids
Hall DG.
Wiley-VCH;
Weinheim:
2005.
Chap.
5.
73
Lam PYS.
Vincent G.
Bonne D.
Clark CG.
Tetrahedron
Lett.
2003,
44:
4927
74
Quach TD.
Batey RA.
Org. Lett.
2003,
5:
1381
75
Shade RE.
Hyde AM.
Olsen J.-C.
Merlic CA.
J. Am. Chem. Soc.
2010,
132:
1202
76
Winternheimer DJ.
Merlic CA.
Org.
Lett.
2010,
12:
2508
77
Tamao K.
Kakui T.
Kumada M.
Tetrahedron
Lett.
1980,
21:
4105