Subscribe to RSS
DOI: 10.1055/s-0030-1258174
Efficient Synthesis of 4-Amino-4-deoxy-l-arabinose and Spacer-Equipped 4-Amino-4-deoxy-l-arabinopyranosides by Transglycosylation Reactions
Publication History
Publication Date:
16 July 2010 (online)
Abstract
Methyl 4-azido-4-deoxy-β-l-arabinopyranoside has been synthesized in five steps starting from methyl β-d-xylopyranoside in a multigram scale without chromatographic purification in 78% overall yield. The transformation relied on selective tosylation/nosylation at O-4 followed by acylation, SN2 displacement with sodium azide, and subsequent deprotection. The methyl 4-azido-4-deoxy-arabinoside was then converted into allyl, propenyl, ω-bromohexyl, and chloroethoxyethyl spacer glycosides by transglycosylation with the respective alcohols in good yields and fair anomeric selectivity. Reduction of the azido group and further transformations of the aglycone afforded ω-thiol-containing spacer derivatives. Coupling to maleimide-activated BSA provided a potent immunogen, which was used to generate murine and rabbit polyclonal sera binding to LPS-core epitopes containing 4-amino-4-deoxy-arabinose residues.
Key words
aminoarabinose - neoglycoconjugate - transglycosylation - lipopolysaccharide - spacer
- For reviews, see:
-
1a
Raetz C.Whitfield C. Annu. Rev. Biochem. 2002, 71: 635 -
1b
Holst O.Molinaro A. In: Microbial GlycobiologyMoran AP.Holst O.Brennan PJ.von Itzstein M. Elsevier; Amsterdam: 2009. p.29-55 ; and references cited therein - 2
Gatzeva-Topalova PZ.May AP.Sousa MC. Biochem. 2005, 44: 5328 - 3
Breazeale SD.Ribeiro AA.Raetz CRH. J. Biol. Chem. 2003, 278: 24731 - 4
Sidorczyk Z.Kaca W.Brade H.Rieschel ET.Sinnwell V.Zähringer U. Eur. J. Biochem. 1987, 168: 269 - 5
Vinogradov EV.Sidorczyk Z.Knirel Y. Aust. J. Chem. 2002, 55: 61 - For reviews, see:
-
6a
Vinion-Dubiel AD.Goldberg JB. J. Endotoxin Res. 2003, 9: 201 -
6b
De Soyza A.Silipo A.Lanzetta R.Govan JR.Molinaro A. Innate Immun. 2008, 14: 127 - 7
Isshiki A.Kawahara K.Zähringer U. Carbohydr. Res. 1998, 313: 21 - 8
Gronow S.Xia G.Brade H. Eur. J. Cell Biol. 2010, 89: 3 - 9
Gronow S.Noah C.Blumenthal A.Lindner B.Brade H. J. Biol. Chem. 2003, 278: 1647 - 10
Vinogradov E.Lindner B.Seltmann G.Radziejewska-Lebrecht J.Holst O. Chem. Eur. J. 2006, 12: 6692 - 11
Moskowitz SM.Ernst RK.Miller SI. J. Bacteriol. 2004, 186: 575 - 12
Naleway JJ.Raetz CHR.Anderson L. Carbohydr. Res. 1988, 179: 199 - 13
Kline T.Trent SM.Stead CM.Lee MS.Sousa MC.Felise HB.Nguyen HV.Miller SI. Bioorg. Med. Chem. Lett. 2008, 18: 1507 - 14
Helm RF.Ralph J.Anderson L. J. Org. Chem. 1991, 56: 7015 - 15
Nilsson M.Westman J.Svahn C.-M. J. Carbohydr. Chem. 1993, 12: 23 - 16
Tadeo K.Ohguchi Y.Hasegawa R.Kitamura S. Carbohydr. Res. 1995, 278: 301 - 17
Ziser L.Withers SG. Carbohydr. Res. 1994, 265: 9 - 18
Tsuda Y.Nishimura M.Kobayashi T.Sato Y.Kanemitsu K. Chem. Pharm. Bull. 1991, 39: 2883 - 19
Kondo Y. Carbohydr. Res. 1982, 110: 339 - 20
Buchanan JG.Edgar AR.Large DG. J. Chem. Soc., Chem. Commun. 1969, 10: 558 - 21
Bayley H.Standring DN.Knowles JR. Tetrahedron Lett. 1978, 19: 3633 - 22
Westphal O.Jann K. Meth. Carbohydr. Chem. 1965, 5: 83