Synthesis 2010(20): 3556-3568  
DOI: 10.1055/s-0030-1258194
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Aza-enamines XI. [¹] Vinylogous Aza-enamines as Neutral d³-Nucleophiles: Aminomethylations of N,N-Dimethylhydrazones of α,β-Unsaturated Aldehydes

Matthias T. Grabowskia,, Karol Nowosinskia, Dieter Lentzb, Rainer Brehme*a, Christoph A. Schalley*a
a Institut für Chemie and Biochemie der Freien Universtät Berlin, Takustraße 3, 14195 Berlin, Germany
Fax: +49(30)83855817; e-Mail: schalley@chemie.fu-berlin.de;
b Institut für Chemie and Biochemie der Freien Universtät Berlin, Fabeckstr. 34-36, 14195 Berlin, Germany
Further Information

Publication History

Received 31 March 2010
Publication Date:
09 August 2010 (online)

Abstract

N,N-Dimethylhydrazones of propenal- and 2-methyl­propenal and their derivatives and homologues (vinylogous aza-enamines) were allowed to react with N,N-dimethylformiminium chloride in moisture-free dimethylformamide to yield singly, doubly, and even triply aminomethylated products. They can be easily separated and characterized as crystalline hydrochlorides. The reaction takes place at the ω-position of the π-system. This is a consequence of the conjugative interaction of the electron-donating aminohydrazone group with the double bond system in analogy to the enamines. The formation of dialkylhydrazones from unsaturated aldehydes thus causes the umpolung of the formerly electrophilic d³-building blocks into a nucleophile. Depending on the reaction conditions and confirmed by crystal structures and 2D NMR experiments, control can be exerted over the degree of substitution: Up to trisubstituted products were obtained for the 2-methylpropenal derivative. The hydrochlorides can be easily deprotonated to yield the free aminohydrazone bases. The back-conversion of the aminohydrazones into the corresponding amino aldehydes is possible under acidic conditions.

1

For Aza-enamines part X, see ref. 4d.

    References

  • 3 Hickmott PW. In The Chemistry of Enamines, Part 1   Patai S. Rappoport Z. Wiley; New York: 1994.  p.727 
  • 4a Brehme R. Nikolajewski HE. Z. Chem.  1968,  8:  226 
  • 4b Brehme R. Nikolajewski HE. Tetrahedron Lett.  1982,  23:  1131 
  • 4c Brehme R. Chem. Ber.  1990,  123:  2039 
  • 4d Brehme R. Gründemann E. Schneider M. Radeglia R. Reck G. Schulz B. Synthesis  2003,  1615 
  • 4e Brehme R. Reck G. Schulz B. Radeglia R. Synthesis  2003,  1620 
  • 4f Brehme R. Gründemann E. Schneider M. J. Prakt. Chem./Chem.-Ztg.  2000,  342:  700 
  • 5a Kamitori Y. Hojo M. Masuda R. Fujitani T. Ohara S. Yokoyama T. J. Org. Chem.  1988,  53:  129 
  • 5b Kamitori Y. Hojo M. Masuda R. Yoshida T. Ohara S. Yamada K. Yoshikawa N. J. Org. Chem.  1988,  53:  519 
  • 6a Brehme R. Nikolajewski HE. Tetrahedron  1969,  25:  1159 
  • 6b Brehme R. Nikolajewski HE. Tetrahedron  1976,  32:  731 
  • 6c Brehme R. Stroede B. J. Prakt. Chem./Chem.-Ztg.  1987,  329:  246 
  • 6d Brehme R. Klemann A. Tetrahedron  1987,  43:  4113 
  • 7a Fernandez R. Lassaletta JM. Synlett  2000,  1228 
  • 7b Herrera RP. Monge D. Martin-Zamora E. Fernandez R. Lassaletta JM. Org. Lett.  2007,  9:  3303 
  • 7c Monge D. Martin-Zamora E. Vazquez J. Alcarazo M. Alvarez E. Fernandez R. Lassaletta JM. Org. Lett.  2007,  9:  2867 
  • 8a Seebach D. Angew. Chem., Int. Ed. Engl.  1979,  18:  239 ; Angew. Chem. 1979, 91, 259
  • 8b Seebach D. Angew. Chem., Int. Ed. Engl.  1969,  8:  639 ; Angew. Chem. 1969, 81, 690
  • 8c Stetter H. Kuhlmann H. Org. React.  1991,  40:  407 
  • 9 Severin T. Wanninger G. Lerche H. Chem. Ber.  1984,  117:  2875 
  • 10 Tolmachev AA. Merkulov AS. Yurchenko AA. Semenova MG. Pinchuk AM. Russian Chem. Bull.  1998,  47:  1749 
  • 11 Mühlstädt M. Weber L. Z. Chem.  1985,  25:  400 
  • 12 Orlewska C. Shaker R. Dees M. Otto H.-H. Monatsh. Chem.  2000,  131:  889 
  • 13 Brehme R. Enders D. Fernandez R. Lassaletta JM. Eur. J. Org. Chem.  2007,  5629 
  • 15 Gomez-Bengoa E. Echavarren AM. J. Org. Chem.  1991,  56:  3497 
  • 16 Böhme H. Keitzer WLG. Chem. Ber.  1958,  91:  340 
  • 18 Mino T. Yamashita M. J. Org. Chem.  1996,  61:  1159 
  • 19 Waldner A. Helv. Chim. Acta  1988,  71:  486 
  • 20 Corey EJ. Enders D. Chem. Ber.  1978,  111:  1362 
  • 21 Nasakin OE. Sheverdov VP. Tafeenko VA. Bulai AKh. Zh. Org. Khim.  1992,  28:  1841 ; J. Org. Chem. USSR.; 1992, 28: 1481
  • 22a Carrol JD. Jones PR. Ball RG. J. Org. Chem.  1991,  56:  4208 
  • 22b Ichikizaki I. Ching-Chun Y. Yutaka F. Yoshihiko H. Bull. Chem. Soc. Jpn.  1955,  28:  80 
  • 22c Forss H. Aust. J. Chem.  1956,  9:  422 
  • 23 Sheldrick GM. SHELX97, Programs for Crystal Structure Analysis (Release 97-2)   Institut für Anorg. Chemie der Universität Göttingen; Göttingen: 1998. 
  • 24 Farrugia LJ. J. Appl. Crystallogr.  1997,  30:  565 
1

For Aza-enamines part X, see ref. 4d.

2

Present address: Institut für Chemie der Technischen Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.

14

The synthetic procedures are described in references 5b, 9, 15, 18-21, which are cited in the text when the corresponding hydrazone is first mentioned.

17

The ¹H NMR shift of the azomethine proton depends on the protonation state of the hydrazone amino group. For example, the azomethine signal of unprotonated 3-(4-nitrophenyl)prop-2-enal dimethylhydrazone (20) appears at 7.07 ppm, while it experiences a significant downfield shift to 8.73 ppm upon protonation to 20˙HCl.

25

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC-725902 [(Z)-6˙HCl], CCDC-725903 [(Z)-10˙4HCl], CCDC-725904 [(E)-12˙2HCl], CCDC-725901 [(Z)-21˙HCl] and CCDC-780812 (27). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: +44(1223)336033; e-mail: deposit@ccdc.cam.ac.uk].