Synthesis 2010(20): 3410-3414  
DOI: 10.1055/s-0030-1258260
PSP
© Georg Thieme Verlag Stuttgart ˙ New York

Titanium-Catalyzed Cyclopropanation of Boc-Protected Cyanohydrins: A Short Access to Aminocyclopropanecarboxylic Acid Derivatives

Morwenna S. M. Pearson-Longa, Alice Beauseigneura, Philippe Karoyanb, Jan Szymoniakc, Philippe Bertus*a
a CNRS UMR 6011 - Unité de Chimie Organique Moléculaire et Macromoléculaire (UCO2M), Université du Maine, 72085 Le Mans Cedex 09, France
Fax: +33(2)43833902; e-Mail: philippe.bertus@univ-lemans.fr;
b CNRS UMR 7613, Université Pierre-et-Marie Curie Paris 6, 75252 Paris Cedex 05, France
c CNRS UMR 6229, Université de Reims-Champagne Ardenne, BP 1039, 51687 Reims Cedex 2, France
Further Information

Publication History

Received 16 June 2010
Publication Date:
17 September 2010 (online)

Abstract

The preparation of protected 1-aminocyclopropanecarboxylic acid was performed from readily available and inexpensive starting materials, using titanium-catalyzed cyclopropanation as the key step. As an extension of this methodology, a diastereoselective synthesis of the cis-2-vinyl-substituted analogue is presented.

    References

  • Reviews for ACC and derivatives:
  • 1a Brackmann F. de Meijere A. Chem. Rev.  2007,  107:  4493 
  • 1b Cativiela C. Diaz-de-Villegas MD. Tetrahedron: Asymmetry  2000,  11:  645 
  • 1c Burgess K. Ho KK. Moye-Sherman D. Synlett  1994,  575 
  • 1d Alami A. Calmes M. Daunis J. Jacquier R. Bull. Soc. Chim. Fr.  1993,  130:  5 
  • 2a Yang SF. Hoffman NE. Annu. Rev. Plant Physiol.  1984,  35:  155 
  • 2b Pirrung MC. Acc. Chem. Res.  1999,  32:  711 
  • 3 Nadler V. Kloog Y. Sokolovsky M. Eur. J. Pharmacol.  1988,  157:  115 
  • 4 Trullas R. Folio T. Young A. Miller R. Boje K. Skolnick P. Eur. J. Pharmacol.  1991,  203:  379 
  • See for instance:
  • 5a Crisma M. Bonora GM. Toniolo C. Barone V. Benedetti E. Di Blasio B. Pavone V. Pedone C. Santini A. Fraternali F. Bavoso A. Lelj F. Int. J. Biol. Macromol.  1989,  11:  345 
  • 5b Evans MC. Pradhan A. Venkatraman S. Ojala WH. Gleason WB. Mishra RK. Johnson RL. J. Med. Chem.  1999,  42:  1441 
  • 5c Zanuy D. Ballano G. Jiménez AI. Casanovas J. Haspel N. Cativiela C. Curcó D. Nussinov R. Alemán C. J. Chem. Inf. Model.  2009,  49:  1623 
  • See for instance:
  • 6a Husbands S. Suckling CA. Suckling CJ. Tetrahedron  1994,  50:  9729 
  • 6b Fink CA. Qiao Y. Berry CJ. Sakane Y. Ghai RD. Trapani AJ. J. Med. Chem.  1995,  38:  5023 
  • 6c Poupart M.-A. Cameron DR. Chabot C. Ghiro E. Goudreau N. Goulet S. Poirier M. Tsatrizos YS. J. Org. Chem.  2001,  66:  4743 
  • See for instance:
  • 7a Moye-Sherman D. Jin S. Ham I. Lim D. Scholtz JM. Burgess K. J. Am. Chem. Soc.  1998,  120:  9435 
  • 7b Jiménez AI. Marraud M. Cativiela C. Tetrahedron Lett.  2003,  44:  3147 
  • 8 Lamarre D. Anderson PC. Bailey M. Beaulieu P. Bolger G. Bonneau PR. Bös M. Cameron DR. Cartier M. Cordingley MG. Faucher A.-M. Coudreau N. Kawai SH. Kukolj G. Lagacé L. LaPlante SR. Narjes H. Poupart M.-A. Rancourt J. Sentjens RE. St George R. Simoneau B. Steinmann G. Thibeault D. Tsantrizos YS. Weldon SM. Yong C.-L. Llinàs-Brunet M. Nature  2003,  426:  186 
  • 9 Ingold CK. Sako S. Thorpe JF. J. Chem. Soc., Trans.  1922,  121:  1177 
  • Some representative examples for the synthesis of ACC:
  • 10a King SW. Riordan JM. Holt EM. Stammer CH. J. Org. Chem.  1982,  47:  3270 
  • 10b Cativiela C. Diaz-de-Villegas MD. Jimenez AI. Tetrahedron  1994,  50:  9157 
  • 10c Adlington RM. Aplin RT. Baldwin JE. Rawlings BJ. Osborne D. J. Chem. Soc., Chem. Commun.  1982,  1086 
  • 10d Allwein SP. Secord EA. Martins A. Mitten JV. Nelson TD. Kress MH. Dolling UH. Synlett  2004,  2489 
  • 10e Hill RK. Prakash SR. Wiesendanger R. Angst W. Martinoni B. Arigoni D. Liu HW. Walsh CT. J. Am. Chem. Soc.  1984,  106:  795 
  • 10f Wheeler TN. Ray JA. Synth. Commun.  1988,  18:  141 
  • 10g Salaün J. Marguerite J. Karkour B. J. Org. Chem.  1990,  55:  4276 
  • 10h Schöllkopf U. Hauptreif M. Dippel J. Nieger M. Egert E. Angew. Chem., Int. Ed. Engl.  1986,  25:  192 
  • 10i Fadel A. Tetrahedron  1991,  47:  6265 
  • 11 Kordes M. Winsel H. de Meijere A. Eur. J. Org. Chem.  2000,  3235 
  • 12a Bertus P. Szymoniak J. J. Org. Chem.  2002,  67:  3965 
  • 12b Laroche C. Harakat D. Bertus P. Szymoniak J. Org. Biomol. Chem.  2005,  3:  3482 
  • For the synthesis of cyclopropylamines from amides or nitriles, see for amides:
  • 13a Chaplinski V. de Meijere A. Angew. Chem., Int. Ed. Engl.  1996,  35:  413 
  • 13b de Meijere A. Kozhushkov SI. Savchenko AI. J. Organomet. Chem.  2004,  689:  2033 
  • For nitriles, see:
  • 13c Bertus P. Szymoniak J. Chem. Commun.  2001,  1792 
  • 13d Bertus P. Szymoniak J. J. Org. Chem.  2003,  68:  7133 
  • 13e Bertus P. Szymoniak J. Synlett  2007,  1346 
  • 15 For the titanium-mediated use of homoallylmagnesium bromide with nitriles, see: Bertus P. Menant C. Tanguy C. Szymoniak J. Org. Lett.  2008,  10:  777 
  • The carboxylic acid 3c was subjected to quantitative esterification using TMSCH=N2 to provide the corresponding methyl ester which showed ¹H and ¹³C NMR signals identical to those reported in the literature and proved the unique cis conformation:
  • 17a For cis-methyl ester, see: Zeng X. Wei X. Farina V. Napolitano E. Xu Y. Zhang L. Haddad N. Yee NK. Grinberg N. Shen S. Senanayaka CH. J. Org. Chem.  2006,  71:  8864 
  • 17b For trans-methyl ester, see: Beaulieu PL. Gillard J. Bailey MD. Boucher C. Duceppe J.-S. Simoneau B. Wang X.-J. Zhang L. Grozinger K. Houpis I. Farina V. Heimroth H. Krueger T. Schnaubelt J. J. Org. Chem.  2005,  70:  5869 
  • 18a Jiménez JM. Casas R. Ortuño RM. Tetrahedron Lett.  1994,  35:  5945 
  • 18b Fliche C. Braun J. Le Goffic F. Synth. Commun.  1994,  24:  2873 
14

Respectively ı 400 and ı 300 for 1 g of ACC and Boc-ACC (Aldrich, 2010).

16

The relative configuration of 4c was established by NOESY 2D NMR analysis of the two diastereomers of 5.