Synlett 2010(15): 2275-2278  
DOI: 10.1055/s-0030-1258529
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

First Total Synthesis of (±)-6′-Methoxyretrojusticidin B Using Regiocontrolled Benzannulation: Structural Inconsistency with Procumphthalide A and Its Revision to 5′-Methoxyretrochinensin

Eri Yoshidaa, Daisuke Yamashitaa, Ryo Sakaia, Yoo Tanabeb, Yoshinori Nishii*a
a Department of Chemistry, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
Fax: +81(268)215391; e-Mail: nishii@shinshu-u.ac.jp;
b Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
Further Information

Publication History

Received 1 June 2010
Publication Date:
30 July 2010 (online)

Abstract

We achieved the first total synthesis of a novel (±)-6′-methoxyretrojusticidin B, which was proposed as procumphthalide A, utilizing regiocontrolled benzannulation of an aryl(aryl′)-2,2-dichlorocyclopropylmethanol as the key step. ¹H NMR spectral data suggested that the structure of the synthesized product, 6′-methoxy­retrojusticidin B, was inconsistent with that of natural procumphthalide A. A computational study of the rotational barrier rationally supports the existence of a rigid chiral axis in 6′-methoxyretrojusticidin B. The revised structural elucidation of natural procumphthalide A was concluded to be 5′-methoxyretrochinensin.

    References and Notes

  • 1a Ward RS. Nat. Prod. Rep.  1990,  7:  349 
  • 1b Ward RS. Nat. Prod. Rep.  1993,  10:  1 
  • 1c Ward RS. Nat. Prod. Rep.  1995,  12:  183 
  • 1d Ward RS. Nat. Prod. Rep.  1997,  14:  43 
  • 1e Ward RS. Nat. Prod. Rep.  1999,  16:  75 
  • 1f Ward RS. Chem. Soc. Rev.  1982,  11:  75 
  • 2 Weng J.-R. Ko H.-H. Yeh T.-L. Lin H.-C. Lin C.-N. Arch. Pharm. Pharm. Med. Chem.  2004,  337:  207 
  • 3 Wu C.-M. Wu S.-C. Chung W.-J. Lin H.-C. Chen K.-T. Chen Y.-C. Hsu M.-F. Yang J.-M. Wang J.-P. Lin C.-N. Int. J. Mol. Sci.  2007,  8:  830 
  • 4a Munakata K. Marumo S. Ohta K. Chen Y.-L. Tetrahedron Lett.  1967,  8:  3821 
  • 4b Pelter A. Ward RS. Satyanarayana P. Collins P. J. Chem. Soc., Perkin Trans. 1  1983,  643 
  • 4c Harrowven DC. Bradley M. Lois Castro J. Flanagan SR. Tetrahedron Lett.  2001,  42:  6973 
  • 5 Nishii Y. Wakasugi K. Koga K. Tanabe Y. J. Am. Chem. Soc.  2004,  126:  5358 
  • 6a Nishii Y. Yoshida T. Tanabe Y. Tetrahedron Lett.  1997,  38:  7195 
  • 6b Nishii Y. Yoshida T. Asano H. Wakasugi K. Morita J. Aso Y. Yoshida E. Motoyoshiya J. Aoyama H. Tanabe Y. J. Org. Chem.  2005,  70:  2667 ; total synthesis of four unsymmetrically substituted lignan lactones, justicidin B, retrojusticidin B, dehydrodesoxypodophyllotoxin, and 5′-methoxyretro-chinensin
  • 7a Tanabe Y. Seko S. Nishii Y. Yoshida T. Utsumi N. Suzukamo G. J. Chem. Soc., Perkin Trans. 1  1996,  2157 ; total synthesis of two symmetrically substituted lignan lactones; justicidin E and taiwanin C, utilizing the first stage nonregiocontrolled benzannulation
  • 7b For optically active compound 1, see: Yasukochi H. Atago T. Tanaka A. Yoshida E. Kakehi A. Nishii Y. Tanabe Y. Org. Biomol. Chem.  2008,  6:  540 
  • 11 Inanaga J. Ishikawa M. Yamaguchi M. Chem. Lett.  1987,  1485 
  • 12a Fetizon M. Golvier MCR. C. R. Seances Acad. Sci., Ser. C  1968,  267:  900 
  • 12b Fetizon M. Golfier M. Louis JM. J. Chem. Soc., Chem. Commun.  1969,  1102 
  • 12c Fetizon M. Golfier M. Louis JM. J. Chem. Soc., Chem. Commun.  1969,  1118 
  • 12d Fetizon M. Golfier M. Louis JM. Tetrahedron  1975,  31:  171 
  • 14a Syper L. Synthesis  1989,  167 
  • 14b Jung ME. Lazarova TI. J. Org. Chem.  1997,  62:  1553 
  • 15a Charlton JL. Oleschuk CJ. Chee G.-L. J. Org. Chem.  1996,  61:  3452 
  • 15b

    For lignan lactones such as Justicidin A and B, retrojusticidin B, helioxanthin, and retrohelioxanthin, ¹H NMR of both methylene groups in the methylenedioxy substituent and in the lactone moiety exhibit AB coupling patterns, because these protons become diastereotopic due to the slow axis rotation. The rotation barriers are calculated by AM1 level (Spartan).

  • 15c

    MO calculations were performed in a manner similar to that in Charlton’s report.

  • 16 Selected data of calculations are described in the Supporting Information.
  • 18 Takano S. Otaki S. Ogasawara K. Tetrahedron Lett.  1985,  26:  1659 
  • 19 Cow C. Leung C. Charlton JL. Can. J. Chem.  2000,  78:  553 
8

The addition proceeded with high syn-diastereoselectivity (>95:5) according to the reported method:6b ArLi attacked the less hindered side of the preferential s-cis conformer of ketone 2a or 2b following the Cram’s rule.

9

AACM 3a was completely consumed but inseparable complex byproducts were yielded.

10

Tetrabrominated product 5 was obtained as inseparable regioisomers, and the structure was difficult to be determined due to a complex ¹H NMR spectrum.

13

Undesirable counter regioisomer was yielded in ca. 10%. The regioselectivity favors the synthesis of retrotype lignan lactones.

17

Data in ref. 6b. ¹H NMR (400 MHz, CDCl3): δ = 3.87 (2 × 3 H, s), 3.96 (3 H, s), 5.22 (2 H, s), 6.10 (2 H, s), 6.54 (2 × 1 H, s), 7.11 (1 H, s), 7.31 (1 H, s), 8.27 (1 H, s).