Subscribe to RSS
DOI: 10.1055/s-0030-1259299
A One-Pot Preparation of 5-Oxo 2,4-Disubstituted 2,5-Dihydro-1H-imidazol-2-carboxylates from α-Bromo Esters
Publication History
Publication Date:
05 January 2011 (online)
Abstract
Nucleophilic substitution of a bromine atom by the azide group in aryl- and heteroaryl-α-bromoacetates triggers cascade reactions leading to imidazolin-5-ones formation. The α-azidoacetate intermediates undergo a transformation into non-isolable 2-imino esters that dimerize giving the heterocyclic imidazoline system. The process described is strongly promoted by dipolar aprotic solvents (DMF, DMSO) and could be realized under base- and metal-free conditions.
Key words
azides - cyclization - substitution - imidazolin-5-ones - nitrenes
- Supporting Information for this article is available online:
- Supporting Information
- 1
Pandya KC.Kurien PN.Surange VR. J. Indian Chem. Soc. 1934, 11: 823 - 2
Wright WB.Brabander HJ.Hardy RA.Osterberg AC. J. Med. Chem. 1966, 9: 852 - 3
Goldberg MW, andLehr HH. inventors; US Patent, US2602086. - 4
Karjalainen AJ,Kurkela K,Oiva APS, andSulevi L. inventors; Eur. Patent EP0058047. - 5
Kumar P.Nath C.Shanker K. Pharmazie 1985, 40: 267 -
6a
Khan KM.Mughal UR.Samreen NA. J. Enzyme Inhib. Med. Ch. 2010, 25: 29 -
6b
Amir M.Kumar A.Ali I. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2009, 48: 1288 -
6c
Desai NC.Bhavsar AM.Baldaniya BB. Indian J. Pharm. Sci. 2009, 71: 90 - 7
Zhou P.Malamas M.Robichaud AJ. ARKIVOC 2010, (vi): 84 - 8
Jain V.Bhattacharjya G.Tej A.Suman CK.Gurunath R.Mazhari B.Iyer SSK. Proceedings of ASID ’06 IITK & SID; New Delhi: 2006. 8-12 Oct. p.244 - 9
Bahadur L.Roy L. J. Appl. Electrochem. 1999, 29: 109 -
10a
Mukerjee AK.Kumar P. Can. J. Chem. 1982, 60: 317 -
10b
Kelarev VI.Silin MA.Borisova OA. Chem. Heterocycl. Compd. 2003, 39: 729 -
10c
Hamidian H.Tikdari AM.Khabazzadeh H. Molecules 2006, 11: 377 -
10d
Wadekar MP.Raut AR.Murhekar GH. Der Pharma Chemica 2010, 2(1): 76 -
11a
Kawasaki A.Maekawa K.Kubo K.Igarashi T.Sakurai T. Tetrahedron 2004, 60: 9517 -
11b
Topuzyan VO.Arutyunyan LG.Oganesyan AA.Panosyan GA. Russ. J. Org. Chem. 2007, 43: 936 -
11c
Topuzyan VO.Arutyunyan LG.Oganesyan AA.Panosyan GA. Russ. J. Org. Chem. 2008, 44: 474 -
13a
Cież D. Org. Lett. 2009, 11: 4282 -
13b For more data on instability
of lithium enolates of α-azidocarboxylic esters, see also:
Manis PA.Rathke MW. J. Org. Chem. 1980, 45: 4952 -
14a
Matsuda Y.Tanimoto S.Okamoto T.Ali SM.
J. Chem. Soc., Perkin Trans. 1 1989, 279 -
14b
Yasunobu A.Shoko T.Tomomi K.Masanori S. Chem. Pharm. Bull. 1984, 32: 1800 - 15
Paul A.Bittermann H.Gmeiner P. Tetrahedron 2006, 62: 8919 -
18a
Bock H.Dammel R.Horner L. Chem. Ber. 1981, 114: 220 -
18b
Bock H.Dammel RS.Aygen J. J. Am. Chem. Soc. 1983, 105: 7681 -
18c
Bock H.Dammel R. Angew. Chem., Int. Ed. Engl. 1987, 26: 504 ; Angew. Chem. 1987, 99, 518 -
18d
Bock H.Dammel R. J. Am. Chem. Soc. 1988, 110: 5261 - For more details, see:
-
19a
Dyke JM.Levita G.Morris AJ.Ogden S.Dias AA.Algarra M.Santos JP.Costa ML.Rodrigues P.Andrade MM.Barros MT. Chem. Eur. J. 2005, 11: 1665 -
19b
Shirtcliff LD.McClintock SP.Haley MM. Chem. Soc. Rev. 2008, 37: 343 -
19c
Trost BM.Fleming I.Ley SV. Oxidation In Comprehensive Organic Synthesis - Selectivity, Strategy and Efficiency in Modern Organic Chemistry Vol. 7: 5th ed.: Elsevier Ltd.; Amsterdam: 2005. p.23 -
20a
Poisel H. Chem. Ber. 1977, 110: 942 -
20b
Shin C.Masaki M.Ohta M. Bull. Chem. Soc. Jpn. 1971, 44: 1657
References and Notes
¹H NMR (600 MHz, DMSO-d 6): δ = 11.25 (s, 1 H, NH), 8.38 (d, 2 H, J HH = 7.8 Hz, CHAr), 7.62 (m, 2 H, CHAr), 7.54 (t, 2 H, J HH = 7.8 Hz, CHAr), 7.44 (t, 2 H, J HH = 7.8 Hz, CHAr), 7.40 (t, 2 H, J HH = 7.2 Hz, CHAr), 4.17 (q, 2 H, J HH = 7.2 Hz, CH3CH 2O), 1.14 (t, 3 H, J HH = 7.2 Hz, CH 3CH2O). ¹³C NMR (150 MHz, DMSO-d 6): δ = 167.7, 164.8, 162.9, 137.3, 132.3, 129.6, 128.8, 128.7, 128.4, 128.3, 126.5, 86.5, 62.5, 13.8. All 2D NMR experiments for 3a were carried out using DMSO-d 6 as a solvent. COSY correlation list: δ [ppm]-δ [ppm](assignment): 1.14-4.17 (CH 3CH2O), 4.17-1.14 (CH3CH 2O), 7.40-7.44 (p-CH), 7.44-7.40, 7.62 (m-CH), 7.54-7.62, 8.38 (m-CH), 7.62-7.54 (p-CH), 7.62-7.44 (o-CH), 8.38-7.54 (o-CH). HSQC: correlation list: ¹³C shift [ppm]-¹H shift [ppm](assignment): 13.7-1.14 (CH 3CH2O), 62.5-4.17 (CH3 CH 2O), 126.5-7.62 (o-CH), 128.3-8.38 (o-CH), 128.4-7.44 (m-CH), 128.7-7.54 (m-CH), 128.8-7.40 (p-CH), 132.3-7.62 (p-CH). HMBC: correlation list: ¹H shift [ppm]-¹³C shifts [ppm] (atom connectivity): 1.14-62.5 (ester group CH 3 CH2O), 4.17-13.7 and 167.7 (ester group CH3CH 2OCO), 7.40-126.5 (p-CH and C-2, phenyl group A), 7.44-126.5, 128.8 and 137.4 (m-CH and C-2, C-4, C-1, phenyl group A), 7.54-128.3, 129.6 (m-CH and C-2, C-1, phenyl group B), 7.62-86.9, 126.5 and 128.8 (o-CH and quaternary C-2 of the imidazolidine ring, C-2, C-4, phenyl group A), 7.62-128.3 (p-CH and C-2, phenyl group B), 8.38-128.7, 132.3 and 162.9 (o-CH and C-3, C-4 in phenyl group B and C=N in the imidazolidine ring), 11.25-86.9, 162.9 and 164.8 (NH group and quaternary C-2, C=N and C=O in the imidazolidine ring). According to HMBC data, phenyl substituents A and B were attached to the imidazolidine ring at C-2 and C-4, respectively.
16General Method for Preparation of Imidazolin-5-ones 3 from α-Bromoacetates; Representative One-Pot Synthesis of Ethyl 2,4-Bis(4-ethoxyphenyl)-5-oxo-2,5-dihydro-1 H -imidazole-2-carboxylate (3d): Ethyl α-bromo-2-(4-ethoxyphenylacetate) (4d; 1.254 g, 4.4 mmol) and sodium azide (0.428 g, 6.6 mmol, 1.5 equiv) were added to DMF (20 mL). The suspension was stirred and heated for 24 h at 80 ˚C. After cooling, the reaction mixture was poured into H2O (100 mL) and extracted with EtOAc (3 × 30 mL). The combined extracts were washed with H2O (2 × 50 mL) and dried over anhyd Na2SO4. The mixture was filtered and the solvent was removed under reduced pressure. The crude product was purified by column chromatography using silica gel (230-400 mesh; CHCl3-MeOH, 30:1) to give 3d as colorless crystals (TLC silica gel; Fluka 60778; CHCl3-MeOH, 30:1; R f 0.55); mp 132 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 8.48 (d, 2 H, J HH = 9.1 Hz, CHAr), 8.40 (br s, 1 H, NH), 7.50 (d, 2 H, J HH = 9.0 Hz, CHAr), 6.95 (d, 2 H, J HH = 9.1 Hz, CHAr), 6.89 (d, 2 H, J HH = 9.0 Hz, CHAr), 4.25 (2 × dq, 2 H, J HH = 7.11, 7.14, 10.7 Hz, OCH2), 4.10 (q, 2 H, J HH = 7.0 Hz, OCH2), 4.02 (q, 2 H, J HH = 7.0 Hz, OCH2), 1.44 (t, 3 H, J HH = 7.0 Hz, Me), 1.40 (t, 3 H, J HH = 7.0 Hz, Me), 1.26 (t, 3 H, J HH = 7.1 Hz, Me). ¹³C NMR (75 MHz, CDCl3): δ = 168.3 (COOEt), 165.7 (CONH), 162.3 (C=N), 161.6 (C4), 159.5 (C4), 130.8 (C3), 129.0 (C1), 127.4 (C3), 122.3 (C1), 114.6 (C2), 114.4 (C2), 86.0 (C2-imidazolidine), 63.6 (OCH2), 63.5 (OCH2), 62.9 (OCH2), 14.7 (Me), 14.7 (Me), 14.0 (Me). IR (neat): 3168, 3071, 2979, 2936, 1742, 1705, 1595, 1571, 1512, 1237, 1172 cm-¹. Anal. Calcd for C22H24N2O5: C, 66.65; H, 6.10; N, 7.06. Found: C, 66.45; H, 6.01; N, 7.10.
17Standard Procedure for Synthesis of α-Bromoacetates from Commercial Ethyl Aryl- and Heteroarylacetates; Representative Preparation of Ethyl Bromo(4-ethoxy-phenyl) Acetate (4d): Ethyl 4-ethoxyphenylacetate (1.695 g, 8.14 mmol) was treated with NBS (1.449 g, 1 equiv) and Luperox® A70S (0.176 g, 0.50 mmol) in CCl4 (30 mL). The reaction mixture was stirred and heated for 30 h at 74 ˚C. After cooling the solution was filtered through a Celite pad and the solvent was evaporated. The crude product, ethyl bromo(4-ethoxyphenyl) acetate (4d), was pure enough to be used for the next step.
21Partial NMR data for diethyl iminomalonate were determined from the crude reaction mixture. ¹H NMR (300 MHz, CDCl3): δ = 11.76 (br s, 1 H, NH), 4.29 (q, 2 H, J HH = 7.1 Hz, OCH2), 1.30 (t, 3 H, J HH = 7.1 Hz, Me). ¹³C NMR (75 MHz, CDCl3): δ = 161.0 (COOEt), 152.3 (C=NH), 61.6 (OCH2), 14.3 (Me).