Subscribe to RSS
DOI: 10.1055/s-0030-1259554
Synthesis of 3-Aryl-3-pyrrolines and 3-Arylpyrroles via Spontaneous Rearrangement of N-Sulfinyl 2-Aryl-2-vinylaziridines
Publication History
Publication Date:
11 February 2011 (online)
Abstract
Addition of vinylmagnesium bromide across chiral α-chloro N-tert-butanesulfinyl ketimines afforded 3-aryl-1-(tert-butanesulfinyl)-3-pyrrolines in high yield (65-91%) after purification by means of recrystallization from diethyl ether. The synthesis of these 3-aryl-3-pyrrolines is explained by initial formation of 2-aryl-2-vinylaziridines which spontaneously rearrange via carbon-nitrogen bond cleavage to form stabilized 1,3-dipolar intermediates which in turn ring closed to 3-pyrrolines.
Key words
aziridines - rearrangement - heterocycles - imines - pyrrolines
-
2a
Lu P. Tetrahedron 2010, 66: 2549 -
2b
Abbaspour Tehrani K.De Kimpe N. Curr. Org. Chem. 2009, 13: 854 -
2c
Padwa A. In Comprehensive Heterocyclic Chemistry III Vol. 1:Katritzky AR.Ramsden CA.Scriven EFV.Taylor RJK. Elsevier; Oxford: 2008. p.1-104 -
2d
Aziridines and
Epoxides in Organic Synthesis
Yudin AK. Wiley-VCH; Weinheim: 2006. -
2e
Hu XE. Tetrahedron 2004, 60: 2701 -
2f
McCoull W.Davis FA. Synthesis 2000, 1347 -
2g
Tanner D. Angew. Chem., Int. Ed. Engl. 1994, 33: 599 -
2h
Sweeney JB. Chem. Soc. Rev. 2002, 31: 247 - For some selected publications on the influence of the aziridine substitution pattern on C-N and C-C bond cleavage, see:
-
3a
Paasche A.Arnone M.Fink RF.Schirmeister T.Engels B. J. Org. Chem. 2009, 74: 5244 -
3b
Banks HD. J. Org. Chem. 2010, 75: 2510 -
3c
Dauban P.Malik G. Angew. Chem. Int. Ed. 2009, 48: 9026 -
3d
Gaebert C.Mattay J. Tetrahedron 1997, 53: 14297 -
3e
Colpaert F.Mangelinckx S.Giubellina N.De Kimpe N. Tetrahedron 2011, 67: 1258 - 4
Joule JA.Mills K. Heterocyclic Chemistry 4th ed.: Blackwell Science; Oxford: 2000. p.237 - 5 For a recent review on the asymmetric
synthesis of aziridines, see:
Pellissier H. Tetrahedron 2010, 66: 1509 - 6
Ohno H. In Aziridines and Epoxides in Organic SynthesisYudin AK. Wiley-VCH; Weinheim: 2006. - 7
Olofsson B.Khamrai U.Somfai P. Org. Lett. 2000, 2: 4087 - 8
Aoyama H.Mimura N.Ohno H.Ishii K.Toda A.Tamamura H.Otaka A.Fujii N.Ibuka T. Tetrahedron Lett. 1997, 38: 7383 - 9
Ley SV.Middleton B. Chem. Commun. 1998, 1995 -
10a
Åhman J.Jarevång T.Somfai P. J. Org. Chem. 1996, 61: 8148 -
10b
Åhman J.Somfai P. J. Am. Chem. Soc. 1994, 116: 9781 -
11a
Hassner A.Chau W. Tetrahedron Lett. 1982, 23: 1989 -
11b
Lindström UL.Somfai P. Chem. Eur. J. 2001, 7: 94 -
11c
Fantauzzi S.Gallo E.Caselli A.Piangiolino C.Ragaini F.Re N.Cenini S. Chem. Eur. J. 2009, 15: 1241 -
12a
Atkinson RS.Rees CW. Chem. Commun. 1967, 1232 -
12b
Gilchrist TL.Rees CW.Stanton E. J. Chem. Soc. C 1971, 3036 -
12c
Hudlicky T.Frazier JO.Seoane G.Tiedje M.Seoane A.Kwart LD.Beal C. J. Am. Chem. Soc. 1986, 108: 3755 -
12d
Hudlicky T.Seoane G.Lovelace TC. J. Org. Chem. 1988, 53: 2094 -
12e
Hudlicky T.Sinai-Zingde G.Seoane G. Synth. Commun. 1987, 17: 1155 -
12f
Hirner S.Somfai P. Synlett 2005, 3099 -
12g
Borel D.Gelas-Mialhe Y.Vessière R. Can. J. Org. Chem. 1976, 54: 1590 -
12h
Knight JG.Muldowney MP. Synlett 1995, 949 -
13a
Brichacek M.Lee D.Njardarson JT. Org. Lett. 2008, 10: 5023 -
13b
Li A.-H.Dai L.-X.Hou X.-L.Chen M.-B. J. Org. Chem. 1996, 61: 4641 -
13c
Hortmann AG.Koo J.-Y. J. Org. Chem. 1974, 39: 3781 -
14a
Scheiner P. J. Org. Chem. 1967, 32: 2628 -
14b
Logothetis AL. J. Am. Chem. Soc. 1965, 87: 749 -
14c
Hudlicky T.Reed JW. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.899-970 -
14d
Somfai P.Åhman J. In Targets in Heterocyclic Systems Italian Society of Chemistry; Rome: 1999. p.341 - 15
Mente PG.Heine HW. J. Org. Chem. 1971, 36: 3076 -
16a
Lee Y.Huang H.Sayre LM. J. Am. Chem. Soc. 1996, 118: 7241 -
16b
Wang Y.-X.Mabic S.Castagnoli N. Bioorg. Med. Chem. 1998, 6: 143 -
16c
Williams CH.Lawson J. Biochem. J. 1998, 336: 63 -
16d
Lee Y.Ling K.-Q.Lu X.Silverman RB.Shepard EM.Dooley DM.Sayre LM. J. Am. Chem. Soc. 2002, 124: 12135 -
16e
Zhang Y.Ran C.Zhou G.Sayre LM. Bioorg. Med. Chem. 2007, 15: 1868 -
16f
Pretorius A.Ogunrombi MO.Terre’Blanche G.Castagnoli N.Bergh JJ.Petzer JP. Bioorg. Med. Chem. 2008, 16: 8813 - 17
Ogunrombi MO.Malan SF.Terre’Blanche G.Castagnoli N.Bergh JJ.Petzer JP. Bioorg. Med. Chem. 2008, 16: 2463 -
18a
Bujard M.Briot A.Gouverneur V.Mioskowski C. Tetrahedron Lett. 1999, 40: 8785 -
18b
Dondas HA.Balme G.Clique B.Grigg R.Hodgeson A.Morris J.Sridharan V. Tetrahedron Lett. 2001, 42: 8673 -
18c
Dondas HA.Clique B.Cetinkaya B.Grigg R.Kilner C.Morris J.Sridharan V. Tetrahedron 2005, 61: 10652 -
18d
Verendel JJ.Zhou T.Li J.-Q.Paptchikhine A.Lebedev O.Andersson PG. J. Am. Chem. Soc. 2010, 132: 8880 - 19
Hercouet A.Neu A.Peyronel J.-F.Carboni B. Synlett 2002, 829 - 20
Chang M.-Y.Pai C.-L.Kung Y.-H. Tetrahedron Lett. 2006, 47: 855 - 21
Nicolaou KC.Krasovskiy A.Majumder U.Trépanier VE.Chen DY.-K. J. Am. Chem. Soc. 2009, 131: 3690 -
22a
Davis FA.Reddy RE.Szewczyk JM.Reddy GV.Portonovo PS.Zhang H.Fanelli D.Reddy RT.Zhou P.Caroll PJ. J. Org. Chem. 1997, 62: 2555 -
22b
Zhou P.Chen B.-C.Davis FA. Tetrahedron 2004, 60: 8003 ; and references cited therein -
23a
Cohan DA.Lui G.Ellman JA. Tetrahedron 1999, 55: 8883 -
23b
Ellman JA.Owens TD.Tang TP. Acc. Chem. Res. 2002, 35: 984 -
23c
Ellman JA. Pure Appl. Chem. 2003, 75: 39 -
23d
Robak MT.Herbage MA.Ellman JA. Chem. Rev. 2010, 110: 3600 -
24a
Ferreira F.Botuha C.Chemla F.Pérez-Luna A. Chem. Soc. Rev. 2009, 38: 1162 -
24b
Morton D.Stockman RA. Tetrahedron 2006, 62: 8869 -
25a
Denolf B.Mangelinckx S.Törnroos KW.De Kimpe N. Org. Lett. 2006, 8: 3129 -
25b
Denolf B.Mangelinckx S.Törnroos KW.De Kimpe N. Org. Lett. 2007, 9: 187 -
25c
Denolf B.Leemans E.De Kimpe N.
J. Org. Chem. 2007, 72: 3211 -
25d
Malkov AV.Stončius S.Kočovský P. Angew. Chem. Int. Ed. 2007, 46: 3722 -
25e
Denolf B.Leemans E.De Kimpe N. J. Org. Chem. 2008, 73: 5662 -
25f
Hodgson DM.Kloesges J.Evans B. Org. Lett. 2008, 10: 2781 -
25g
Chen Q.Li J.Yuan C. Synthesis 2008, 2986 -
25h
Leemans E.Mangelinckx S.De Kimpe N. Synlett 2009, 1265 -
25i
Hodgson DM.Kloesges J.Evans B. Synthesis 2009, 1923 -
25j
Colpaert F.Mangelinckx S.Leemans E.De Kimpe N. Org. Biomol. Chem. 2010, 8: 3251 -
26a
De Kimpe N.Verhé R.De Buyck L.Schamp N. Org. Prep. Proced. Int. 1980, 12: 49 -
26b
De Kimpe N.Verhé R.De Buyck L.Schamp N. J. Org. Chem. 1980, 45: 5319 -
26c
De Kimpe N.Sulmon P.Verhé R.De Buyck L.Schamp N. J. Org. Chem. 1983, 48: 4320 -
27a
Morton D.Pearson D.Field RA.Stockman RA. Org. Lett. 2004, 6: 2377 -
27b
Chigboh K.Morton D.Nadin A.Stockman RA. Tetrahedron Lett. 2008, 49: 4768 -
27c
Morton D.Pearson D.Field RA.Stockman RA. Chem. Commun. 2006, 1833 - 28
Zheng J.-C.Liao W.-W.Sun X.-X.Sun X.-L.Tang Y.Dai L.-X.Deng J.-G. Org. Lett. 2005, 7: 5789 - 29
Kokotos C.Aggarwal VK. Org. Lett. 2007, 9: 2099 - 30
Colyer JT.Andersen NG.Tedrow JS.Soukup TS.Faul MM. J. Org. Chem. 2006, 71: 6859 -
31a
Liu Z.-J.Mei Y.-Q.Liu J.-T. Tetrahedron 2006, 63: 855 -
31b
Sun X.-W.Xu M.-H.Lin G.-Q. Org. Lett. 2006, 8: 4979 -
35a
Campi EM.Jackson WR. J. Organomet. Chem. 1996, 523: 205 -
35b
Tomooka K.Nakazaki A.Nakai T.
J. Am. Chem. Soc. 2000, 122: 408 - 36
Dieter RK.Yu H. Org. Lett. 2001, 3: 3855 -
38a
Donohoe TJ.Orr AJ.Gosby K.Bingham M. Eur. J. Org. Chem. 2005, 1969 -
38b
Beck EM.Hatley R.Gaunt MJ. Angew. Chem. Int. Ed. 2008, 47: 3004 -
38c
Wang X.Lane BS.Sames D. J. Am. Chem. Soc. 2005, 127: 4996 -
38d
Dohi T.Morimoto K.Takenaga N.Goto A.Maruyama A.Kiyono Y.Tohma H.Kita Y. J. Org. Chem. 2007, 72: 109 -
38e
Balasubramanian T.Strachan J.-P.Boyle PD.Lindsey JS. J. Org. Chem. 2000, 65: 7919 -
38f
Kim H.-J.Lindsey JS. J. Org. Chem. 2005, 70: 5475 -
39a
Aponick A.Li C.-Y.Malinge J.Marques EF. Org. Lett. 2009, 11: 4624 -
39b
Join B.Yamamoto T.Itami K. Angew. Chem. Int. Ed. 2009, 48: 3644 -
39c
Du X.Xie X.Liu Y. J. Org. Chem. 2010, 75: 510 -
39d
Wen J.Qin S.Ma L.-F.Dong L.Zhang J.Liu S.-S.Duan Y.-S.Chen S.-Y.Hu C.-W.Yu X.-Q. Org. Lett. 2010, 12: 2694 - 40
Dondas HA.De Kimpe N. Tetrahedron Lett. 2005, 46: 4179 - 42
Gajda T.Zwierzak A. Liebigs Ann. Chem. 1986, 992
References and Notes
Postdoctoral Fellow of the Research Foundation-Flanders (FWO).
32Synthesis of ( R S )- N - tert -Butanesulfinyl 3-Phenyl-3-pyrroline (4a) α-Chloro imine 5a (0.91 mmol) was dissolved in dry CH2Cl2 (10 mL), and the stirred solution was cooled to -78 ˚C. Two equiv of vinylmagnesium bromide (1 M solution in THF, 1.82 mL, 1.82 mmol) were added to the solution, and the reaction mixture was allowed to stir for 2 h at -78 ˚C before being left at -40 ˚C for 4 h. The reaction mixture was quenched at this temperature by the addition of aq NH4Cl (5 mL) and immediately extracted with CH2Cl2 (2 × 10 mL). The organic layers were dried (MgSO4, containing little of K2CO3), filtered, and concentrated. The mixture was purified by means of recrystallization from Et2O to afford the pyrroline 4a in 91% yield. Colorless crystals; mp 55.6 ± 0.5 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 1.50 (9 H, s), 3.39 (1 H, dddd, J = 15.8, 5.5, 4.1, 1.4 Hz), 3.85 (1 H, dddd, J = 15.8, 4.3, 3.3, 3.3 Hz), 4.25 (1 H, dddd, J = 18.4, 3.3, 1.7, 1.7 Hz), 4.40 (1 H, dddd, J = 18.4, 4.4, 4.4, 1.7 Hz), 5.99-6.03 (1 H, m), 7.28-7.37 (5 H, m). ¹³C NMR (75 MHz, CDCl3): δ = 22.1, 36.9, 48.3, 55.4, 112.6, 125.4, 128.1, 128.6, 135.3, 139.1. MS (ES, pos. mode): m/z (%) = 194 (100) [M - t-Bu + 2H]+. IR (KBr): νmax = 1042, 1085, 1364, 1453, 2962 cm-¹. Anal. Calcd for C14H19NOS: C, 67.43; H, 7.68; N, 5.62. Found: C, 67.17; H, 7.84; N, 5.33. [α]D -28.3 (c 1.03, CH2Cl2).
33( R s , S )-1-( tert -Butanesulfinyl)-2-isopropenyl-2-phenylaziridine [( R s ,S )-6] Yellow crystals; mp 54.2 ± 0.5 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 1.21 (9 H, s), 1.65 (3 H, s), 2.11 (1 H, s), 3.23 (1 H, s), 4.95 (1 H, s), 5.14 (1 H, s), 7.26-7.47 (5 H, m). ¹³C NMR (75 MHz, CDCl3): δ = 19.8, 22.8, 30.3, 51.1, 57.4, 112.9, 128.3, 128.5, 129.7, 134.9, 145.4. MS (ES, pos. mode): m/z (%) = 264 (100) [M + H]+. IR (ATR): νmax = 696, 1074, 1447, 2961 cm-¹. Anal. Calcd for C15H21NOS: C, 68.40; H, 8.04; N, 5.32. Found: C, 68.04; H, 8.24; N, 5.12. R f = 0.28 (PE-EtOAc = 3:1). [α]D -394.7 (c 1.03, CH2Cl2).
34
(
R
S
)-
N
-
tert
-Butanesulfinyl 2-Methyl-4-phenyl-3-pyrroline
(9)
Spectroscopic data of the major diastereomer obtained
from the mixture of diastereomers 9 (dr
86:14). Brown oil. ¹H NMR (300 MHz, CDCl3): δ = 1.51
(9 H, s), 1.53 (3 H, d, J = 6.6
Hz), 3.88-3.98 (1 H, m), 4.20 (1 H, ddd, J = 18.4, 3.0,
1.4 Hz), 4.39 (1 H, ddd, J = 18.4,
4.1, 1.9 Hz), 5.70-5.72 (1 H, m), 7.27-7.37 (5
H, m). ¹³C NMR (75 MHz, CDCl3):
δ = 19.2,
24.5, 42.9, 46.2, 60.9, 122.1, 125.7, 127.9, 128.6, 139.3, 139.8.
MS (ES, pos. mode): m/z (%) = 264
(100)
[M + H]+.
IR (ATR): νmax = 694, 1050, 1447, 2926
cm-¹. Anal. Calcd for C15H21NOS:
C, 68.40; H, 8.04; N, 5.32. Found: C, 68.69; H, 7.99; N, 5.49.
Synthesis of (
R
S
)-
N
-(
tert
-Butanesulfinyl) 3-(4-Methoxy-phenyl)pyrrole
(13e)
2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (0.042
g, 0.18 mmol) was dissolved in 1,4-dioxane (10 mL) and the mixture
added dropwise to a solution of (R
S
)-N-(tert-butanesulfinyl)-3-(4-methoxyphenyl)-3-pyrroline
(4e, 0.057 g, 0.20 mmol) in 1,4-dioxane
(10 mL). After stirring for 16 h at r.t., the reaction mixture was
quenched by the addition of a 10% solution of NaHSO3 (5
mL) and immediately extracted with EtOAc (2 × 10
mL). The organic layers were dried (MgSO4), filtered,
and concentrated. The compound was purified by means of column chromatography
to afford (R
S
)-N-(tert-butanesulfinyl)
3-(4-methoxyphenyl)pyrrole (13e, 0.049
g) in 87% yield; black crystals; mp 133.6 ± 0.5 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.45 (9 H,
s), 3.82 (3 H, s), 5.86 (1 H, dd, J = 9.9,
1.7 Hz), 6.89-6.93 (2 H, m), 7.22-7.26 (2 H, m),
7.53 (1 H, dd, J = 9.9,
2.2 Hz), 7.68-7.70 (1 H, m). ¹³C
NMR (75 MHz, CDCl3): δ = 23.2, 55.4, 62.1,
88.8, 113.8, 114.3, 126.6, 131.4, 139.8, 144.9, 158.2. MS (ES, pos.
mode): m/z (%) = 278
(100) [M + H]+. IR (ATR): νmax = 1187,
1367, 1591, 2928 cm-¹. Anal. Calcd
for C15H19NO2S: C, 64.95; H, 6.90;
N, 5.05. Found: C, 65.07; H, 6.64; N, 4.89. R
f
= 0.29
(PE-EtOAc = 3:1). [α]D = 28.7
(c 0.09, CH2Cl2).
Synthesis of 3,4-Dibromo-3-phenylpyrrolidine
(14)
A solution of (R
S
)-N-(tert-butanesulfinyl)-3-phenyl-3-pyrroline
(4a, 0.1 g, 0.40 mmol) in dry CH2Cl2 (10
mL) was cooled to 0 ˚C and Br2 (1.05
equiv, 0.023 mL, 0.42 mmol) was added dropwise. After stirring for
1 h, Et3N (1 equiv, 0.06 mL, 0.40 mmol) was added, and
the reaction mixture was allowed to stir for another 30 min at r.t.
H2O (10 mL) was added, and the reaction mixture was immediately extracted
with CH2Cl2 (2 × 10
mL). The combined organic layers were dried (MgSO4),
filtered, and concentrated. The compound was purified by means of
column chromatography (R
f
= 0.18;
PE-EtOAc = 3:1) to afford 3,4-dibromo-3-phenylpyrrolidine
(14, 0.04 g) in 33% yield. Light
brown oil. ¹H NMR (300 MHz, CDCl3): δ = 3.73
(1 H, dd, J = 14.9,
3.3 Hz), 3.91-3.99 (1 H, m), 4.35 (1 H, dd, J = 15.1,
4.1 Hz), 4.62 (1 H, dd, J = 15.4,
11.6 Hz), 5.11-5.23 (2 H, m), 7.38-7.48 (5 H,
m). ¹³C NMR (75
MHz, CDCl3): δ = 49.9, 50.8, 53.0,
66.3, 126.2, 129.1, 129.6, 140.0. IR (ATR): νmax = 1156,
1337, 2359, 3271 cm-¹. Anal. Calcd
for C10H11Br2N: C, 39.38; H, 3.64;
N, 4.59. Found: C, 39.03; H, 3.88; N, 4.21.