Synlett 2011(5): 674-678  
DOI: 10.1055/s-0030-1259554
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of 3-Aryl-3-pyrrolines and 3-Arylpyrroles via Spontaneous Rearrangement of N-Sulfinyl 2-Aryl-2-vinylaziridines

Erika Leemans, Filip Colpaert, Sven Mangelinckx, Stijn De Brabandere, Bram Denolf, Norbert De Kimpe*
Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
Fax: +32(9)2646221; e-Mail: norbert.dekimpe@ugent.be;
Further Information

Publication History

Received 10 January 2011
Publication Date:
11 February 2011 (online)

Abstract

Addition of vinylmagnesium bromide across chiral α-chloro N-tert-butanesulfinyl ketimines afforded 3-aryl-1-(tert-butanesulfinyl)-3-pyrrolines in high yield (65-91%) after purification by means of recrystallization from diethyl ether. The synthesis of these 3-aryl-3-pyrrolines is explained by initial formation of 2-aryl-2-vinylaziridines which spontaneously rearrange via carbon-nitrogen bond cleavage to form stabilized 1,3-dipolar intermediates which in turn ring closed to 3-pyrrolines.

    References and Notes

  • 2a Lu P. Tetrahedron  2010,  66:  2549 
  • 2b Abbaspour Tehrani K. De Kimpe N. Curr. Org. Chem.  2009,  13:  854 
  • 2c Padwa A. In Comprehensive Heterocyclic Chemistry III   Vol. 1:  Katritzky AR. Ramsden CA. Scriven EFV. Taylor RJK. Elsevier; Oxford: 2008.  p.1-104  
  • 2d Aziridines and Epoxides in Organic Synthesis   Yudin AK. Wiley-VCH; Weinheim: 2006. 
  • 2e Hu XE. Tetrahedron  2004,  60:  2701 
  • 2f McCoull W. Davis FA. Synthesis  2000,  1347 
  • 2g Tanner D. Angew. Chem., Int. Ed. Engl.  1994,  33:  599 
  • 2h Sweeney JB. Chem. Soc. Rev.  2002,  31:  247 
  • For some selected publications on the influence of the aziridine substitution pattern on C-N and C-C bond cleavage, see:
  • 3a Paasche A. Arnone M. Fink RF. Schirmeister T. Engels B. J. Org. Chem.  2009,  74:  5244 
  • 3b Banks HD. J. Org. Chem.  2010,  75:  2510 
  • 3c Dauban P. Malik G. Angew. Chem. Int. Ed.  2009,  48:  9026 
  • 3d Gaebert C. Mattay J. Tetrahedron  1997,  53:  14297 
  • 3e Colpaert F. Mangelinckx S. Giubellina N. De Kimpe N. Tetrahedron  2011,  67:  1258 
  • 4 Joule JA. Mills K. Heterocyclic Chemistry   4th ed.:  Blackwell Science; Oxford: 2000.  p.237 
  • 5 For a recent review on the asymmetric synthesis of aziridines, see: Pellissier H. Tetrahedron  2010,  66:  1509 
  • 6 Ohno H. In Aziridines and Epoxides in Organic Synthesis   Yudin AK. Wiley-VCH; Weinheim: 2006. 
  • 7 Olofsson B. Khamrai U. Somfai P. Org. Lett.  2000,  2:  4087 
  • 8 Aoyama H. Mimura N. Ohno H. Ishii K. Toda A. Tamamura H. Otaka A. Fujii N. Ibuka T. Tetrahedron Lett.  1997,  38:  7383 
  • 9 Ley SV. Middleton B. Chem. Commun.  1998,  1995 
  • 10a Åhman J. Jarevång T. Somfai P. J. Org. Chem.  1996,  61:  8148 
  • 10b Åhman J. Somfai P. J. Am. Chem. Soc.  1994,  116:  9781 
  • 11a Hassner A. Chau W. Tetrahedron Lett.  1982,  23:  1989 
  • 11b Lindström UL. Somfai P. Chem. Eur. J.  2001,  7:  94 
  • 11c Fantauzzi S. Gallo E. Caselli A. Piangiolino C. Ragaini F. Re N. Cenini S. Chem. Eur. J.  2009,  15:  1241 
  • 12a Atkinson RS. Rees CW. Chem. Commun.  1967,  1232 
  • 12b Gilchrist TL. Rees CW. Stanton E. J. Chem. Soc. C  1971,  3036 
  • 12c Hudlicky T. Frazier JO. Seoane G. Tiedje M. Seoane A. Kwart LD. Beal C. J. Am. Chem. Soc.  1986,  108:  3755 
  • 12d Hudlicky T. Seoane G. Lovelace TC. J. Org. Chem.  1988,  53:  2094 
  • 12e Hudlicky T. Sinai-Zingde G. Seoane G. Synth. Commun.  1987,  17:  1155 
  • 12f Hirner S. Somfai P. Synlett  2005,  3099 
  • 12g Borel D. Gelas-Mialhe Y. Vessière R. Can. J. Org. Chem.  1976,  54:  1590 
  • 12h Knight JG. Muldowney MP. Synlett  1995,  949 
  • 13a Brichacek M. Lee D. Njardarson JT. Org. Lett.  2008,  10:  5023 
  • 13b Li A.-H. Dai L.-X. Hou X.-L. Chen M.-B. J. Org. Chem.  1996,  61:  4641 
  • 13c Hortmann AG. Koo J.-Y. J. Org. Chem.  1974,  39:  3781 
  • 14a Scheiner P. J. Org. Chem.  1967,  32:  2628 
  • 14b Logothetis AL. J. Am. Chem. Soc.  1965,  87:  749 
  • 14c Hudlicky T. Reed JW. In Comprehensive Organic Synthesis   Vol. 5:  Trost BM. Fleming I. Pergamon Press; Oxford: 1991.  p.899-970  
  • 14d Somfai P. Åhman J. In Targets in Heterocyclic Systems   Italian Society of Chemistry; Rome: 1999.  p.341 
  • 15 Mente PG. Heine HW. J. Org. Chem.  1971,  36:  3076 
  • 16a Lee Y. Huang H. Sayre LM. J. Am. Chem. Soc.  1996,  118:  7241 
  • 16b Wang Y.-X. Mabic S. Castagnoli N. Bioorg. Med. Chem.  1998,  6:  143 
  • 16c Williams CH. Lawson J. Biochem. J.  1998,  336:  63 
  • 16d Lee Y. Ling K.-Q. Lu X. Silverman RB. Shepard EM. Dooley DM. Sayre LM. J. Am. Chem. Soc.  2002,  124:  12135 
  • 16e Zhang Y. Ran C. Zhou G. Sayre LM. Bioorg. Med. Chem.  2007,  15:  1868 
  • 16f Pretorius A. Ogunrombi MO. Terre’Blanche G. Castagnoli N. Bergh JJ. Petzer JP. Bioorg. Med. Chem.  2008,  16:  8813 
  • 17 Ogunrombi MO. Malan SF. Terre’Blanche G. Castagnoli N. Bergh JJ. Petzer JP. Bioorg. Med. Chem.  2008,  16:  2463 
  • 18a Bujard M. Briot A. Gouverneur V. Mioskowski C. Tetrahedron Lett.  1999,  40:  8785 
  • 18b Dondas HA. Balme G. Clique B. Grigg R. Hodgeson A. Morris J. Sridharan V. Tetrahedron Lett.  2001,  42:  8673 
  • 18c Dondas HA. Clique B. Cetinkaya B. Grigg R. Kilner C. Morris J. Sridharan V. Tetrahedron  2005,  61:  10652 
  • 18d Verendel JJ. Zhou T. Li J.-Q. Paptchikhine A. Lebedev O. Andersson PG. J. Am. Chem. Soc.  2010,  132:  8880 
  • 19 Hercouet A. Neu A. Peyronel J.-F. Carboni B. Synlett  2002,  829 
  • 20 Chang M.-Y. Pai C.-L. Kung Y.-H. Tetrahedron Lett.  2006,  47:  855 
  • 21 Nicolaou KC. Krasovskiy A. Majumder U. Trépanier VE. Chen DY.-K. J. Am. Chem. Soc.  2009,  131:  3690 
  • 22a Davis FA. Reddy RE. Szewczyk JM. Reddy GV. Portonovo PS. Zhang H. Fanelli D. Reddy RT. Zhou P. Caroll PJ. J. Org. Chem.  1997,  62:  2555 
  • 22b Zhou P. Chen B.-C. Davis FA. Tetrahedron  2004,  60:  8003 ; and references cited therein
  • 23a Cohan DA. Lui G. Ellman JA. Tetrahedron  1999,  55:  8883 
  • 23b Ellman JA. Owens TD. Tang TP. Acc. Chem. Res.  2002,  35:  984 
  • 23c Ellman JA. Pure Appl. Chem.  2003,  75:  39 
  • 23d Robak MT. Herbage MA. Ellman JA. Chem. Rev.  2010,  110:  3600 
  • 24a Ferreira F. Botuha C. Chemla F. Pérez-Luna A. Chem. Soc. Rev.  2009,  38:  1162 
  • 24b Morton D. Stockman RA. Tetrahedron  2006,  62:  8869 
  • 25a Denolf B. Mangelinckx S. Törnroos KW. De Kimpe N. Org. Lett.  2006,  8:  3129 
  • 25b Denolf B. Mangelinckx S. Törnroos KW. De Kimpe N. Org. Lett.  2007,  9:  187 
  • 25c Denolf B. Leemans E. De Kimpe N.
    J. Org. Chem.  2007,  72:  3211 
  • 25d Malkov AV. Stončius S. Kočovský P. Angew. Chem. Int. Ed.  2007,  46:  3722 
  • 25e Denolf B. Leemans E. De Kimpe N. J. Org. Chem.  2008,  73:  5662 
  • 25f Hodgson DM. Kloesges J. Evans B. Org. Lett.  2008,  10:  2781 
  • 25g Chen Q. Li J. Yuan C. Synthesis  2008,  2986 
  • 25h Leemans E. Mangelinckx S. De Kimpe N. Synlett  2009,  1265 
  • 25i Hodgson DM. Kloesges J. Evans B. Synthesis  2009,  1923 
  • 25j Colpaert F. Mangelinckx S. Leemans E. De Kimpe N. Org. Biomol. Chem.  2010,  8:  3251 
  • 26a De Kimpe N. Verhé R. De Buyck L. Schamp N. Org. Prep. Proced. Int.  1980,  12:  49 
  • 26b De Kimpe N. Verhé R. De Buyck L. Schamp N. J. Org. Chem.  1980,  45:  5319 
  • 26c De Kimpe N. Sulmon P. Verhé R. De Buyck L. Schamp N. J. Org. Chem.  1983,  48:  4320 
  • 27a Morton D. Pearson D. Field RA. Stockman RA. Org. Lett.  2004,  6:  2377 
  • 27b Chigboh K. Morton D. Nadin A. Stockman RA. Tetrahedron Lett.  2008,  49:  4768 
  • 27c Morton D. Pearson D. Field RA. Stockman RA. Chem. Commun.  2006,  1833 
  • 28 Zheng J.-C. Liao W.-W. Sun X.-X. Sun X.-L. Tang Y. Dai L.-X. Deng J.-G. Org. Lett.  2005,  7:  5789 
  • 29 Kokotos C. Aggarwal VK. Org. Lett.  2007,  9:  2099 
  • 30 Colyer JT. Andersen NG. Tedrow JS. Soukup TS. Faul MM. J. Org. Chem.  2006,  71:  6859 
  • 31a Liu Z.-J. Mei Y.-Q. Liu J.-T. Tetrahedron  2006,  63:  855 
  • 31b Sun X.-W. Xu M.-H. Lin G.-Q. Org. Lett.  2006,  8:  4979 
  • 35a Campi EM. Jackson WR. J. Organomet. Chem.  1996,  523:  205 
  • 35b Tomooka K. Nakazaki A. Nakai T.
    J. Am. Chem. Soc.  2000,  122:  408 
  • 36 Dieter RK. Yu H. Org. Lett.  2001,  3:  3855 
  • 38a Donohoe TJ. Orr AJ. Gosby K. Bingham M. Eur. J. Org. Chem.  2005,  1969 
  • 38b Beck EM. Hatley R. Gaunt MJ. Angew. Chem. Int. Ed.  2008,  47:  3004 
  • 38c Wang X. Lane BS. Sames D. J. Am. Chem. Soc.  2005,  127:  4996 
  • 38d Dohi T. Morimoto K. Takenaga N. Goto A. Maruyama A. Kiyono Y. Tohma H. Kita Y. J. Org. Chem.  2007,  72:  109 
  • 38e Balasubramanian T. Strachan J.-P. Boyle PD. Lindsey JS. J. Org. Chem.  2000,  65:  7919 
  • 38f Kim H.-J. Lindsey JS. J. Org. Chem.  2005,  70:  5475 
  • 39a Aponick A. Li C.-Y. Malinge J. Marques EF. Org. Lett.  2009,  11:  4624 
  • 39b Join B. Yamamoto T. Itami K. Angew. Chem. Int. Ed.  2009,  48:  3644 
  • 39c Du X. Xie X. Liu Y. J. Org. Chem.  2010,  75:  510 
  • 39d Wen J. Qin S. Ma L.-F. Dong L. Zhang J. Liu S.-S. Duan Y.-S. Chen S.-Y. Hu C.-W. Yu X.-Q. Org. Lett.  2010,  12:  2694 
  • 40 Dondas HA. De Kimpe N. Tetrahedron Lett.  2005,  46:  4179 
  • 42 Gajda T. Zwierzak A. Liebigs Ann. Chem.  1986,  992 
1

Postdoctoral Fellow of the Research Foundation-Flanders (FWO).

32

Synthesis of ( R S )- N - tert -Butanesulfinyl 3-Phenyl-3-pyrroline (4a) α-Chloro imine 5a (0.91 mmol) was dissolved in dry CH2Cl2 (10 mL), and the stirred solution was cooled to -78 ˚C. Two equiv of vinylmagnesium bromide (1 M solution in THF, 1.82 mL, 1.82 mmol) were added to the solution, and the reaction mixture was allowed to stir for 2 h at -78 ˚C before being left at -40 ˚C for 4 h. The reaction mixture was quenched at this temperature by the addition of aq NH4Cl (5 mL) and immediately extracted with CH2Cl2 (2 × 10 mL). The organic layers were dried (MgSO4, containing little of K2CO3), filtered, and concentrated. The mixture was purified by means of recrystallization from Et2O to afford the pyrroline 4a in 91% yield. Colorless crystals; mp 55.6 ± 0.5 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 1.50 (9 H, s), 3.39 (1 H, dddd, J = 15.8, 5.5, 4.1, 1.4 Hz), 3.85 (1 H, dddd, J = 15.8, 4.3, 3.3, 3.3 Hz), 4.25 (1 H, dddd, J = 18.4, 3.3, 1.7, 1.7 Hz), 4.40 (1 H, dddd, J = 18.4, 4.4, 4.4, 1.7 Hz), 5.99-6.03 (1 H, m), 7.28-7.37 (5 H, m). ¹³C NMR (75 MHz, CDCl3): δ = 22.1, 36.9, 48.3, 55.4, 112.6, 125.4, 128.1, 128.6, 135.3, 139.1. MS (ES, pos. mode): m/z (%) = 194 (100) [M - t-Bu + 2H]+. IR (KBr): νmax = 1042, 1085, 1364, 1453, 2962 cm. Anal. Calcd for C14H19NOS: C, 67.43; H, 7.68; N, 5.62. Found: C, 67.17; H, 7.84; N, 5.33. [α]D -28.3 (c 1.03, CH2Cl2).

33

( R s , S )-1-( tert -Butanesulfinyl)-2-isopropenyl-2-phenylaziridine [( R s ,S )-6] Yellow crystals; mp 54.2 ± 0.5 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 1.21 (9 H, s), 1.65 (3 H, s), 2.11 (1 H, s), 3.23 (1 H, s), 4.95 (1 H, s), 5.14 (1 H, s), 7.26-7.47 (5 H, m). ¹³C NMR (75 MHz, CDCl3): δ = 19.8, 22.8, 30.3, 51.1, 57.4, 112.9, 128.3, 128.5, 129.7, 134.9, 145.4. MS (ES, pos. mode): m/z (%) = 264 (100) [M + H]+. IR (ATR): νmax = 696, 1074, 1447, 2961 cm. Anal. Calcd for C15H21NOS: C, 68.40; H, 8.04; N, 5.32. Found: C, 68.04; H, 8.24; N, 5.12. R f  = 0.28 (PE-EtOAc = 3:1). [α]D -394.7 (c 1.03, CH2Cl2).

34

( R S )- N - tert -Butanesulfinyl 2-Methyl-4-phenyl-3-pyrroline (9)
Spectroscopic data of the major diastereomer obtained from the mixture of diastereomers 9 (dr 86:14). Brown oil. ¹H NMR (300 MHz, CDCl3): δ = 1.51 (9 H, s), 1.53 (3 H, d, J = 6.6 Hz), 3.88-3.98 (1 H, m), 4.20 (1 H, ddd, J = 18.4, 3.0, 1.4 Hz), 4.39 (1 H, ddd, J = 18.4, 4.1, 1.9 Hz), 5.70-5.72 (1 H, m), 7.27-7.37 (5 H, m). ¹³C NMR (75 MHz, CDCl3):
δ = 19.2, 24.5, 42.9, 46.2, 60.9, 122.1, 125.7, 127.9, 128.6, 139.3, 139.8. MS (ES, pos. mode): m/z (%) = 264 (100)
[M + H]+. IR (ATR): νmax = 694, 1050, 1447, 2926 cm. Anal. Calcd for C15H21NOS: C, 68.40; H, 8.04; N, 5.32. Found: C, 68.69; H, 7.99; N, 5.49.

37

Synthesis of ( R S )- N -( tert -Butanesulfinyl) 3-(4-Methoxy-phenyl)pyrrole (13e)
2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (0.042 g, 0.18 mmol) was dissolved in 1,4-dioxane (10 mL) and the mixture added dropwise to a solution of (R S )-N-(tert-butanesulfinyl)-3-(4-methoxyphenyl)-3-pyrroline (4e, 0.057 g, 0.20 mmol) in 1,4-dioxane (10 mL). After stirring for 16 h at r.t., the reaction mixture was quenched by the addition of a 10% solution of NaHSO3 (5 mL) and immediately extracted with EtOAc (2 × 10 mL). The organic layers were dried (MgSO4), filtered, and concentrated. The compound was purified by means of column chromatography to afford (R S )-N-(tert-butanesulfinyl) 3-(4-methoxyphenyl)pyrrole (13e, 0.049 g) in 87% yield; black crystals; mp 133.6 ± 0.5 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 1.45 (9 H, s), 3.82 (3 H, s), 5.86 (1 H, dd, J = 9.9, 1.7 Hz), 6.89-6.93 (2 H, m), 7.22-7.26 (2 H, m), 7.53 (1 H, dd, J = 9.9, 2.2 Hz), 7.68-7.70 (1 H, m). ¹³C NMR (75 MHz, CDCl3): δ = 23.2, 55.4, 62.1, 88.8, 113.8, 114.3, 126.6, 131.4, 139.8, 144.9, 158.2. MS (ES, pos. mode): m/z (%) = 278 (100) [M + H]+. IR (ATR): νmax = 1187, 1367, 1591, 2928 cm. Anal. Calcd for C15H19NO2S: C, 64.95; H, 6.90; N, 5.05. Found: C, 65.07; H, 6.64; N, 4.89. R f  = 0.29 (PE-EtOAc = 3:1). [α]D = 28.7 (c 0.09, CH2Cl2).

41

Synthesis of 3,4-Dibromo-3-phenylpyrrolidine (14)
A solution of (R S )-N-(tert-butanesulfinyl)-3-phenyl-3-pyrroline (4a, 0.1 g, 0.40 mmol) in dry CH2Cl2 (10 mL) was cooled to 0 ˚C and Br2 (1.05 equiv, 0.023 mL, 0.42 mmol) was added dropwise. After stirring for 1 h, Et3N (1 equiv, 0.06 mL, 0.40 mmol) was added, and the reaction mixture was allowed to stir for another 30 min at r.t. H2O (10 mL) was added, and the reaction mixture was immediately extracted with CH2Cl2 (2 × 10 mL). The combined organic layers were dried (MgSO4), filtered, and concentrated. The compound was purified by means of column chromatography (R f  = 0.18; PE-EtOAc = 3:1) to afford 3,4-dibromo-3-phenylpyrrolidine (14, 0.04 g) in 33% yield. Light brown oil. ¹H NMR (300 MHz, CDCl3): δ = 3.73 (1 H, dd, J = 14.9, 3.3 Hz), 3.91-3.99 (1 H, m), 4.35 (1 H, dd, J = 15.1, 4.1 Hz), 4.62 (1 H, dd, J = 15.4, 11.6 Hz), 5.11-5.23 (2 H, m), 7.38-7.48 (5 H, m). ¹³C NMR (75 MHz, CDCl3): δ = 49.9, 50.8, 53.0, 66.3, 126.2, 129.1, 129.6, 140.0. IR (ATR): νmax = 1156, 1337, 2359, 3271 cm. Anal. Calcd for C10H11Br2N: C, 39.38; H, 3.64; N, 4.59. Found: C, 39.03; H, 3.88; N, 4.21.