Subscribe to RSS
DOI: 10.1055/s-0030-1259679
1,2-Addition of Phenylacetylene to Aldimines Catalyzed by InCl3/CuCl in Water under Barbier Conditions
Publication History
Publication Date:
23 February 2011 (online)
Abstract
A new and efficient method for the preparation of various propargylamines has been achieved by the simple Barbier-Grignard-type reaction of phenylacetylene with a variety of aldimines under aqueous conditions, catalyzed by a bimetallic In-Cu system.
Key words
aldimines - water - indium chloride - copper chloride - propargylamines
- 1
Tuck DG. In Comprehensive Organometallic Chemistry Vol. 1:Wilkinson G. Pergamon Press; New York: 1982. p.683-723 -
2a
Li C.-J. Tetrahedron 1996, 52: 5643 -
2b
Li C.-J.Chan TH. Organic Reactions in Aqueous Media John Wiley and Sons; New York: 1997. -
2c
Reissig HU. Organic Synthesis Highlights VCH; Weinheim: 1991. p.71 -
2d
Li C.-J. Chem. Rev. 1993, 93: 2023 -
2e
Sarma R.Sarmah MM.Lekhok KC.Prajapati D. Synlett 2010, 2847 -
2f
Lubineau A.Auge J.Queneau Y. Synthesis 1994, 741 - For Barbier-type allylation using Bi, see:
-
3a
Katritzky AR.Shobana N.Harris PA. Organometallics 1992, 11: 1381 - Using Sn see:
-
3b
Marton D.Stivanello D.Tagliavini G. J. Org. Chem. 1996, 61: 2731 - Using Mg, see:
-
3c
Barbot F.Miginiac P. Tetrahedron Lett. 1975, 16: 3829 - Using Ce, see:
-
3d
Imamoto T.Kashumo T.Tuosorayama Y.Mita T.Hatanaka Y.Yokayoma M. J. Org. Chem. 1984, 49: 3904 - Using Ba, see:
-
3e
Yanagisawa A.Koide T.Yoshida K. Synlett 2010, 1515 - 4
Yamamoto Y.Asao N. Chem. Rev. 1993, 93: 2207 - 5
Grieco PA. Organic Synthesis in Water Blackie Academic and Professional; London: 1998. - For the biological significance of propargylamine, see:
-
6a
Konishi M.Ohkuma H.Tsuno T.Oki T.VanDuyne G.Clardy J. J. Am. Chem. Soc. 1990, 112: 3715 -
6b
Nilsson B.Vargas HM.Ringdahl B.Hacksell U.
J. Med. Chem. 1992, 35: 285 -
6c
Miura M.Enna M.Okuro K.Nomura M. J. Org. Chem. 1995, 60: 4999 -
6d For a recent review, see:
Cozzi PG.Hilgraf R.Zimmermann N. Eur. J. Org. Chem. 2004, 4095 -
6e
Lu Y.Johnstone TC.Arndtsen BA. J. Am. Chem. Soc. 2009, 131: 11284 -
7a
Cozzi PG.Hilgraf RN.Zimmermann N. Eur. J. Org. Chem. 2004, 4095 -
7b
Pu L.Yu HB. Chem. Rev. 2001, 101: 757 - 8 For a recent review, see:
Yamada K.Tomioka K. Chem. Rev. 2008, 108: 2874 - For a review, see:
-
9a
Pu L. Tetrahedron 2003, 59: 9873 - For recent representative examples, see:
-
9b
Gao G.Xie R.-G.Pu L. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5417 -
9c
Li Z.-B.Pu L. Org. Lett. 2004, 6: 1065 -
9d
Xu Z.Chen C.Xu J.Miao M.Yan W.Wang R. Org. Lett. 2004, 6: 1193 -
9e
Dahmen S. Org. Lett. 2004, 6: 2113 -
9f
Cozzi PG.Alesi S. Chem. Commun. 2004, 2448 -
9g
Liu L.Wang R.Kang Y.-F.Chen C.Xu Z.-Q.Zhou Y.-F.Ni M.Cai H.-Q.Gong M.-Z. J. Org. Chem. 2005, 70: 1084 - For review, see:
-
10a
Alcaide B.Almendros P. Eur. J. Org. Chem. 2002, 1595 -
10b
List B. Tetrahedron 2002, 58: 5573 -
11a
Shibasaki M.Yoshikawa N. Chem. Rev. 2002, 102: 2187 -
11b
Shibasaki M.Kanai M.Funabashi K. Chem. Commun. 2002, 1989 -
11c
Ma J.-A.Cahard D. Angew. Chem. Int. Ed. 2004, 43: 4566 - 12
Bloch R. Chem. Rev. 1998, 98: 1407 -
13a
Kobayashi S.Ishitani H. Chem Rev. 1999, 99: 1069 -
13b
Enders D.Reinhold U. Tetrahedron: Asymmetry 1997, 8: 1895 -
13c
Brook MA.Jahangir A. Synth. Commun. 1988, 18: 893 -
14a
Traverse JF.Hoveyda AH.Snapper ML. Org. Lett. 2003, 5: 3273 -
14b
Akullian LC.Ho veyda AH.Snapper ML. Angew. Chem. Int. Ed. 2003, 42: 4244 -
15a
Wie C.Li CJ. J. Am. Chem. Soc. 2002, 124: 5638 -
15b
Wei C.Mague JT.Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5749 -
16a
Koradin C.Polborn K.Knochel P. Angew. Chem. Int. Ed. 2002, 41: 2535 -
16b
Gommermann N.Koradin C.Polborn K.Knochel P. Angew. Chem. Int. Ed. 2003, 42: 5763 - 17
Jiang B.Si Y.-G. Angew. Chem. Int. Ed. 2004, 43: 216 - For other recent reports, see:
-
18a
Fischer C.Carreira EM. Org. Lett. 2001, 3: 4319 -
18b
Fischer C.Carreira EM. Org. Lett. 2004, 6: 1497 -
18c
Wei C.Li Z.Li C. Org. Lett. 2003, 5: 4473 -
18d
Park SB.Alper H. Chem. Commun. 2005, 1315 -
19a
Laskar DD.Prajapati D.Sandhu JS. Tetrahedron Lett. 2001, 42: 7883 -
19b
Laskar DD.Gohain M.PrajapatiD .Sandhu JS. New J. Chem. 2002, 26: 193 -
19c
Gohain M.Gogoi BJ.Prajapati D.Sandhu JS. New J. Chem. 2003, 27: 1038 -
19d
Borah HN.Prajapati D.Boruah RC. Synlett 2005, 2823 -
19e
Sarma R.Prajapati D. Synlett 2008, 3001 -
21a
Auge J.Lubin-Germain N.Seghrouchni L. Tetrahedron Lett. 2002, 43: 5255 -
21b
Auge J.Lubin-Germain N.Seghrouchni L. Tetrahedron Lett. 2003, 44: 819 - 22
Kalyanam N.Rao GV. Tetrahedron Lett. 1993, 34: 1647 - 23
Frantz DE.Fassler R.Carreira EM. J. Am. Chem. Soc. 1999, 121: 11245 - 24
Zani L.Bolm C. Chem. Commun. 2006, 4263 ; and references cited therein -
25a
Zhang K.Huang Y.Rugu C. Tetrahedron Lett. 2010, 51: 5463 -
25b
Liu B.Huang L.Liu J.Zhong Y.Li X.Chan ASC. Tetrahedron: Asymmetry 2007, 18: 2901 -
25c
Hatano M.Asai T.Ishihara K. Tetrahedron Lett. 2008, 49: 379
References and Notes
General Experimental
Procedure for the Addition of Alkynes 1 to Aldimines 2
Aldimine 1a (0.225 g, 1 mmol) in a round-bottomed
flask was treated with InCl3 (0.0026 g, 1.2 mol%),
CuCl (0.120 g, 12 mol%), phenyl acetylene (0.12 g, 1.2
mmol), and H2O (2 mL). The mixture was then stirred at
r.t. for 20 min and then at 40 ˚C for 4 h. Stirring
was continued until no further increase of the reaction product
as monitored by ¹H NMR. After completion, the
product was extracted with Et2O or EtOAc (3 × 30
mL). The combined organic layers were washed with H2O
and dried over anhyd Na2SO4. Evaporation of
the solvent gave a crude product which was subjected to column chromatography
on silica gel with EtOAc-hexane (1:6) as eluent to afford
exclusively the corresponding propargylamine 3a in
85% yield.
Conpound 3b:
IR (liquid film): νmax = 3410, 2230,
1615, 1510, 1325, 1185 cm-
¹. ¹H
NMR (300 MHz, CDCl3): δ = 2.20 (s,
3 H), 4.12 (br, 1 H), 5.21 (s, 1 H), 6.84-7.01 (m, 3 H),
7.18-7.36 (m, 7 H), 7.40-7.48 (m, 2 H), 7.62 (d, J = 8.5 Hz,
2 H). ¹
³C NMR (75 MHz, CDCl3): δ = 21.3,
50.6, 85.2, 89.0, 115.1, 119.2, 123.1, 127.5, 128.3, 128.5, 129.3,
129.6, 132.1, 137.2, 138.2, 146.8. MS: m/z = 297 [M+].
Compound 3h: mp 185-86 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 2.24 (s,
3 H), 4.83 (br, 1 H), 5.48 (d, 1 H), 7.18-7.24
(m,
2 H), 7.32-7.48 (m, 8 H), 7.59-7.65 (m, 2 H),
7.76 (d, J = 8.5
Hz, 2 H). ¹
³C NMR (75 MHz,
CDCl3): δ = 21.4, 50.1, 85.6, 87.2,
120.0, 127.2, 127.6, 128.2, 128.6, 128.8, 129.0, 129.6, 131.5, 137.4,
137.8, 144.5. MS: m/z = 361 [M+].
Compound 3j: mp 192-193 ˚C, ¹H
NMR (300 MHz, CDCl3): δ = 2.28 (s,
3 H), 2.34 (s, 3 H), 4.82 (br, 1 H), 5.42 (d, 1 H), 7.10-7.31
(m, 9 H), 7.38 (d, J = 8.5
Hz, 2 H), 7.68 (d, J = 8.5
Hz, 2 H). ¹
³C NMR (75 MHz,
CDCl3): δ = 21.3, 21.7, 50.2, 85.6,
87.0, 121.3, 127.1, 127.8, 128.4, 129.0, 129.2, 129.8, 130.2, 132.0,
136.2, 137.4, 138.6, 145.8. MS: m/z = 375 [M+].
Compound 3k: mp 197-199 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 2.33 (s,
3 H), 4.80 (br, 1 H), 5.50 (d, 1 H), 7.19-7.42 (m, 10 H),
7.55 (d, J = 8.5
Hz, 2 H), 7.70 (d, J = 8.5
Hz, 2 H). ¹
³C NMR (75 MHz,
CDCl3): δ = 21.8, 49.8, 85.6, 87.0, 121.2,
127.0, 127.8, 128.4, 128.6, 129.1, 129.2, 129.8, 130.2, 132.1, 136.2,
137.3, 138.6, 145.8. MS: m/z = 361 [M+].