Subscribe to RSS
DOI: 10.1055/s-0030-1259703
Synthesis of Hydroxylated 3,4-Dihydropyridine-2-ones from Intramolecular Nucleophilic Addition Reaction of Oxirane-Containing Tertiary Enamides
Publication History
Publication Date:
08 March 2011 (online)
![](https://www.thieme-connect.de/media/synlett/201107/lookinside/thumbnails/10.1055-s-0030-1259703-1.jpg)
Abstract
Catalyzed by p-toluenesulfonic acid in dry acetonitrile, oxirane-containing tertiary enamides underwent efficient cyclization via intramolecular addition to produce 3-hydroxy-3,4-dihydropyridin-2(1H)-one derivatives in moderate to good yields.
Key words
enamides - oxiranes - nucleophilic addition - cyclization - 3,4-dihydropyridin-2-ones
- Supporting Information for this article is available online:
- Supporting Information
- 1 For example of anti-HIV activity,
see:
Medina-Franco JL.Martinez-Mayorga K.Juárez-Gordiano C.Castillo R. ChemMedChem 2007, 2: 1141 - 2
Yang M.-H.Chen Y.-Y.Huang L. Phytochemistry 1988, 27: 445 -
3a
Feng Z.Lubell WD. J. Org. Chem. 2001, 66: 1171 -
3b
Polyak F.Lubell WD. J. Org. Chem. 2001, 66: 1181 - 4
Keller PA. Pyridinones and Related Systems, In Science of Synthesis Vol. 15: Thieme; Stuttgart: 2005. p.285 -
5a
Yadav LDS.Kapoor R. Tetrahedron Lett. 2008, 49: 4840 -
5b
Yadav LDS.Kapoor R. Synlett 2008, 2348 -
6a
Stork G.Terrell R.Szmuszkovicz J. J. Am. Chem. Soc. 1954, 76: 2029 -
6b
Stork G.Landesman H. J. Am. Chem. Soc. 1956, 78: 5128 -
6c
Stork G.Brizzolara A.Szmuszkovicz J.Terrell R. J. Am. Chem. Soc. 1963, 85: 207 -
6d
The
Chemistry of Enamines
Rappoport Z. John Wiley and Sons; Chichester: 1994. - 7
Carbery DR. Org. Biomol. Chem. 2008, 6: 3455 -
8a
Matsubara R.Kobayashi S. Acc. Chem. Res. 2008, 41: 292 ; and references cited therein -
8b Brønsted acid catalyzed
reaction of secondary enamides with imines is also known. See:
Terada M.Machioka K.Sorimachi K. Angew. Chem. Int. Ed. 2006, 45: 2254 -
8c
Terada K.Machioka K.Sorimachi K. J. Am. Chem. Soc. 2007, 129: 10336 - For examples of enaminic reactions of tertiary enamides, see:
-
9a
Shono T.Matsumura Y.Tsubata K.Sugihara Y.Yamane S.-i.Kanazawa T.Aoki T. J. Am. Chem. Soc. 1982, 104: 6697 -
9b
Eberson L.Malmberg M.Nyberg K. Acta Chem. Scand. 1984, 38: 391 -
9c
Meth-Cohn O.Westwood KT. J. Chem. Soc., Perkin Trans. 1 1984, 1173 -
9d
Nilson MG.Funk RL. Org. Lett. 2006, 8: 3833 -
10a
Yang L.Deng G.Wang D.-X.Huang Z.-T.Zhu J.-P.Wang M.-X. Org. Lett. 2007, 9: 1387 -
10b
Yang L.Zheng Q.-Y.Wang D.-X.Huang Z.-T.Wang M.-X. Org. Lett. 2008, 10: 2461 -
10c
Yang L.Wang D.-X.Zheng Q.-Y.Pan J.Huang Z.-T.Wang M.-X. Org. Biomol. Chem. 2009, 7: 2628 -
11a
Yang L.Wang D.-X.Huang Z.-T.Wang M.-X. J. Am. Chem. Soc. 2009, 131: 10390 -
11b
Yang L.Lei C.-H.Wang D.-X.Huang Z.-T.Wang M.-X. Org. Lett. 2010, 12: 3918
References and Notes
Typical Procedure
for the Conversion of 4a into Compound 6
Refluxing
a suspension of enamide 4a (0.4 mmol, 111
mg) in deionized H2O (12 mL) for 4 h under argon protection gave
rise to a homogeneous solution. After addition of brine (30 mL),
the mixture was extracted with EtOAc (3 × 20
mL). The organic layer was dried with anhyd Na2SO4,
filtered, and concentrated under vacuum. The residue was subjected to
chromatography using a silica gel (200-300 mesh) column
eluting with a mixture of PE and EtOAc (1:1) as mobile phase to
give product 6.
Mp 130-132 ˚C.
IR (KBr): ν = 3307, 1637 cm-¹. ¹H
NMR (300 MHz, CDCl3, 300 K): δ = 7.23-7.98
(m, 10 H), 6.26 (s, 1 H), 4.38 (dd, J = 3.9,
5.2 Hz, 1 H), 3.73-3.85 (m, 2 H), 3.41-3.47 (m,
1 H), 3.29 (d, J = 5.6
Hz, 1 H), 2.71 (d, J = 2.7 Hz,
3 H). ¹³C NMR (75 MHz, CDCl3,
300 K): δ = 199.5, 172.8, 139.2, 136.8, 133.4,
128.76, 128.7, 128.4, 128.2, 127.3, 73.6, 44.8, 40.7, 25.7. ESI-MS:
298 (52) [M + 1]+, 320
(100) [M + Na]+.
Anal. Calcd for C18H19NO3: C, 72.71; H,
6.44; N, 4.71. Found: C, 72.94; H, 6.59; N, 4.86.
General Procedure
for the Synthesis of Compounds 5 and 8
To a solution
of 4 or 7 (0.4
mmol) in dry MeCN (12 mL) was added PTSA (0.08 mmol, 14 mg) while
stirring at 0 ˚C. The mixture was then kept stirring
until the starting material was completely consumed. Water (100
mL) was added, and the mixture was extracted with EtOAc (3 × 50
mL). The organic layer was dried with anhyd MgSO4 and
concentrated. The residue was subjected to a silica gel (200-300
mesh) column eluted with a mixture of PE and EtOAc (3:1) to afford
pure 5 or 8.
Selected Data for Compound 5a
Mp
143-145 ˚C. IR (KBr): ν = 3442,
1668 cm-¹. ¹H NMR (300
MHz, CDCl3, 300 K): δ = 7.25-7.40
(m, 10 H), 5.35 (d, J = 2.4
Hz, 1 H), 4.38 (dd, J = 1.0,
13.7 Hz, 1 H), 3.88 (d, J = 1.8
Hz, 1 H), 3.78 (dd, J = 2.4,
13.7 Hz, 1 H), 3.04 (s, 3 H). ¹³C NMR
(75 MHz, CDCl3, 300 K): δ = 172.9,
141.6, 140.6, 135.0, 128.9, 128.7, 128.66, 128.0, 127.7, 127.3,
113.3, 71.3, 45.8, 32.7. ESI-MS: m/z = 280
(26) [M + 1]+, 302
(100) [M + Na]+.
Anal. Calcd for C18H17NO2: C, 77.40;
H, 6.13; N, 5.01. Found: C, 77.25; H, 6.39; N, 4.94.