Synlett 2011(8): 1129-1132  
DOI: 10.1055/s-0030-1259936
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Can the Crabbé Homologation Be Successfully Applied to the Synthesis of 1,3-Disubstituted Allenes?

Shinji Kitagaki*, Mika Komizu, Chisato Mukai*
Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
Fax: +81(76)2344410; e-Mail: kitagaki@p.kanazawa-u.ac.jp;
Further Information

Publication History

Received 31 January 2011
Publication Date:
07 April 2011 (online)

Abstract

The Crabbé homologation of terminal alkynes could be applied to the synthesis of 1,3-disubstituted allenes using aldehydes, N,N-dicyclohexylamine, and a catalytic amount of copper(I) iodide. The key to this success was the employment of an excess of aldehyde and amine, and performing the reaction under microwave irradiation conditions.

    References and Notes

  • 1a Crabbé P. Fillion H. André D. Luche J.-L. J. Chem. Soc., Chem. Commun.  1979,  859 
  • 1b Crabbé P. André D. Fillion H. Tetrahedron Lett.  1979,  893 
  • 1c Fillion H. André D. Luche J.-L. Tetrahedron Lett.  1980,  929 
  • 1d Searles S. Li Y. Lopes M.-TR. Tran PT. Crabbé P. J. Chem. Soc., Perkin Trans. 1  1984,  747 
  • For recent reviews, see:
  • 2a Ogasawara M. Tetrahedron: Asymmetry  2009,  20:  259 
  • 2b Brummond KM. DeForrest JE. Synthesis  2007,  795 
  • 2c Modern Allene Chemistry   Krause N. Hashmi ASK. Wiley-VCH; Weinheim: 2004. 
  • 3 Nakamura H. Sugiishi T. Tanaka Y. Tetrahedron Lett.  2008,  49:  7230 
  • 4 Kuang J. Ma S. J. Org. Chem.  2009,  74:  1763 
  • 5 Lavallo V. Frey GD. Kousar S. Donnadieu B. Bertrand G. Proc. Natl. Acad. Sci. U.S.A.  2007,  104:  13569 
  • 6 Kuang J. Ma S. J. Am. Chem. Soc.  2010,  132:  1786 
  • 7 Nakamura H. Ishikura M. Sugiishi T. Kamakura T. Biellmann J.-F. Org. Biomol. Chem.  2008,  6:  1471 
  • 8a Lo VK.-Y. Wong M.-K. Che C.-M. Org. Lett.  2008,  10:  517 
  • 8b Lo VK.-Y. Zhou C.-Y. Wong M.-K. Che C.-M. Chem. Commun.  2010,  46:  213 
  • 8c Melchionna M. Nieger M. Helaja J. Chem. Eur. J.  2010,  16:  8262 
  • 9 For the synthesis of substituted allenes from propargyl ethers, see: Bolte B. Odabachian Y. Gagosz F. J. Am. Chem. Soc.  2010,  132:  7294 
  • For reviews of catalytic three-component coupling of alkyne, aldehyde, and amine, see:
  • 10a Kouznetsov VV. Méndez LYV. Synthesis  2008,  491 
  • 10b Zani L. Bolm C. Chem. Commun.  2006,  4263 
  • 10c Wei C. Li Z. Li C.-J. Synlett  2004,  1472 
  • For selected examples of Cu(I)-catalyzed three-component coupling of alkyne, aldehyde, and amine, see:
  • 11a Gommermann N. Koradin C. Knochel P. Angew. Chem. Int. Ed.  2003,  42:  5763 
  • 11b Gommermann N. Knochel P. Chem. Eur. J.  2006,  12:  4380 
  • 11c Shi L. Tu Y.-Q. Wang M. Zhang F.-M. Fan C.-A. Org. Lett.  2004,  6:  1001 
  • 11d Sreedhar B. Reddy PS. Prakash BV. Ravindra A. Tetrahedron Lett.  2005,  46:  7019 
  • 11e Sasaki N. Uchida N. Konakahara T. Synlett  2008,  1515 
  • 11f Ohta Y. Chiba H. Oishi S. Fujii N. Ohno H. J. Org. Chem.  2009,  74:  7052 
  • 11g Bariwal JB. Ermolat’ev DS. Glasnov TN. Van Hecke K. Mehta VP. Van Meervelt L. Kappe CO. Van der Eycken EV. Org. Lett.  2010,  12:  2774 
  • 12 Sugiishi T. Kimura A. Nakamura H. J. Am. Chem. Soc.  2010,  132:  5332 
13

Typical Procedure for the Microwave-Assisted Crabbé Homologation
Alkyne 1a (65.0 mg, 0.500 mmol), aldehyde 2b (68 µL, 0.75 mmol), amine 3b (150 µL, 0.754 mmol), CuI (9.6 mg, 0.050 mmol), and toluene (1.0 mL) were mixed in a 2 mL process vial. The vial was sealed, and the reaction mixture was heated with microwaves to 200 ˚C for 2 h. After cooling, the mixture was filtered, and the filtrate was concentrated. The residue was purified by column chromatography on silica gel(hexane) to afford 5ab (46.8 mg, 50%) as a colorless oil. IR (CHCl3): 1961 cm. ¹H NMR (600 MHz, CDCl3, TMS): δ = 7.27 (t, J = 7.6 Hz, 2 H), 7.20-7.16 (m, 3 H), 5.14-5.06 (m, 2 H), 2.72 (t, J = 7.6 Hz, 2 H), 2.32-2.27 (m, 2 H), 1.97-1.87 (m, 2 H), 1.38 (sext, J = 7.6 Hz, 2 H), 0.90 (t, J = 7.6 Hz, 3 H). ¹³C NMR (150 MHz, CDCl3): δ = 204.1, 141.9, 128.5, 128.2, 125.8, 91.3, 90.2, 35.5, 31.0, 30.7, 22.4, 13.6. MS (EI): m/z (%) = 186 (3.1) [M+]. HRMS: m/z calcd for C14H18: 186.1409; found: 186.1407.