References and Notes
1a
Blaise EE.
C. R. Hebd. Seances
Acad. Sci.
1901,
132:
478
1b
Blaise EE.
C. R. Hebd. Seances Acad. Sci.
1901,
132:
987
1c
Blaise EE.
Courtot AP.
Bull.
Soc. Chim. Fr.
1906,
35:
589
2
Benetti S.
Romagnoli R.
Chem. Rev.
1995,
95:
1065
3
Rao HSP.
Rafi S.
Padmavathy K.
Tetrahedron
2008,
64:
8037
4a
Chun YS.
Lee KK.
Ko YO.
Shin H.
Lee S.
Chem. Commun.
2008,
5098
4b
Ko YO.
Chun YS.
Park C.-L.
Kim Y.
Shin H.
Ahn S.
Hong J.
Lee S.
Org.
Biomol. Chem.
2009,
7:
1132
4c
Chun YS.
Ryu KY.
Ko YO.
Hong JY.
Hong J.
Shin H.
Lee S.
J. Org. Chem.
2009,
74:
7556
4d
Kim JH.
Lee S.
Org. Lett.
2011,
13:
1351
5a Review: Lechel T.
Reissig H.-U.
Pure
Appl. Chem.
2010,
82:
1835
For original publications:
5b
Flögel O.
Dash J.
Brüdgam I.
Hartl H.
Reissig H.-U.
Chem. Eur. J.
2004,
10:
4283
5c
Dash J.
Lechel T.
Reissig H.-U.
Org.
Lett.
2007,
9:
5541
5d
Lechel T.
Dash J.
Brüdgam I.
Reissig H.-U.
Eur. J. Org. Chem.
2008,
3647
5e
Eidamshaus C.
Reissig H.-U.
Adv. Synth. Catal.
2009,
351:
1162
5f
Dash J.
Reissig H.-U.
Chem. Eur. J.
2009,
15:
6811
5g
Lechel T.
Brüdgam I.
Reissig H.-U.
Beilstein
J. Org. Chem.
2010,
6:
No.
42
5h
Lechel T.
Dash J.
Eidamshaus C.
Brüdgam I.
Lentz D.
Reissig H.-U.
Org. Biomol. Chem.
2010,
8:
3007
5i
Lechel T.
Dash J.
Hommes P.
Lentz D.
Reissig H.-U.
J. Org. Chem.
2010,
75:
726
5j
Bera MK.
Reissig H.-U.
Synthesis
2010,
2129
5k
Eidamshaus C.
Kumar R.
Bera MK.
Reissig H.-U.
Beilstein J. Org. Chem.
2011,
7:
962
5l Eidamshaus, C.; Reissig, H.-U. Eur. J.
Org. Chem. 2011, DOI: 10.1002/ejoc.201100681.
6 For a proposed mechanism, see ref.
5l.
7a
Lehn J.-M.
Supramolecular Chemistry - Concepts
and Perspectives
VCH;
Weinheim:
1995.
Selected reviews:
7b
Kaes C.
Katz A.
Hosseini MW.
Chem.
Rev.
2000,
100:
3553
7c
Schubert US.
Eschbaumer C.
Angew. Chem.
Int. Ed.
2002,
41:
2892 ; Angew. Chem.
2002
, 114, 3016
7d
Fletcher NC.
J. Chem. Soc., Perkin Trans. 1
2002,
1831
7e
Ye B.-H.
Tong M.-L.
Chen X.-M.
Coord. Chem.
Rev.
2005,
249:
545
For reviews, see:
8a
Kröhnke F.
Synthesis
1976,
1
8b
Summers LA.
The Bipyridines,
In Advances in Heterocyclic Chemistry
Vol.
35:
Katritzky AR.
Academic
Press;
Orlando, FL:
1984.
p.281
8c
Chelucci G.
Thummel RP.
Chem. Rev.
2002,
102:
3129
8d
Varela
JA.
Saá C.
Chem.
Rev.
2003,
103:
3787
8e
Newkome GR.
Patri AK.
Holder E.
Schubert US.
Eur.
J. Org. Chem.
2004,
235
8f
Hapke M.
Brandt L.
Lützen A.
Chem.
Soc. Rev.
2008,
37:
2782
Selected recent examples:
9a
Altuna-Urquijo M.
Gehre A.
Stanforth SP.
Tarbit B.
Tetrahedron
2009,
65:
975
9b
Gutz C.
Lützen A.
Synthesis
2010,
85
9c
Kremer C.
Lützen A.
Synthesis
2011,
210
9d
Duric S.
Tzschucke
CC.
Org.
Lett.
2011,
13:
2310
10
Representative
Procedure for the N-Acylation of α-Acyl-β-enamino
Esters with 2-Picolyl Chloride: Ethyl 3-oxo-2-[phenyl(picolinamido)methylene]butanoate
(7a)
SOCl2 (0.29 mL, 4.00 mmol) was added
dropwise to a solution of 2-picolinic acid (492 mg, 4.00 mmol),
and Et3N (0.55 mL, 4.00 mmol) in CH2Cl2 (13
mL) under an argon atmosphere. After addition of catalytic amounts
of DMF the mixture was stirred for 4 h at r.t. A solution of α-acyl-β-enamino
ester 3a (467 mg, 2.00 mmol) in CH2Cl2 (7
mL) was added at 0 ˚C. While stirring overnight
the mixture was allowed to warm up to r.t. (in some cases conversion
of the starting material was complete after a few hours) and sat.
aq NaHCO3 solution (20 mL) was added. The layers were separated,
and the aqueous layer was extracted three times with CH2Cl2 (20
mL). The combined organic layers were dried with Na2SO4,
and after filtration the solvent was removed under reduced pressure.
Purification of the crude product by flash chromatography (silica
gel, hexane-
EtOAc = 4:1 → 2:1)
afforded 590 mg (87%) of 7a (major/minor
isomer ca. 3.5:1) as brownish oil. IR (ATR): 3170 (NH), 3060 (=CH),
2980, 2930 (CH), 1710 (C=O), 1650, 1550 (C=C,
C=N) cm-¹. Chemical shifts
are listed for the major isomer only. ¹H NMR
(500 MHz, CDCl3): δ = 0.83
(t, J = 7.1
Hz, 3 H, CH3), 2.39 (s, 3 H, COCH3), 3.84
(q, J = 7.1 Hz,
2 H, OCH2), 7.33-7.44 (m, 5 H, Ph), 7.48 (ddd, J = 7.7, 4.5,
1.0 Hz, 1 H, 5′-H), 7.82 (td, J = 7.7,
1.7 Hz, 1 H, 4′-H), 8.04 (dbr, J = 7.7
Hz, 1 H, 3′-H), 8.78 (dbr, J = 4.5
Hz, 1 H, 6′-H) ppm; the NH signal could not be detected. ¹³C
NMR (126 MHz, CDCl3): δ = 13.4
(q, CH3), 29.7 (q, COCH3), 61.2
(t, OCH2), 116.7 (s, CCOCH3),
123.2 (d, C-3′), 127.0 (d, C-5′), 127.5, 127.9,
129.3, 134.5 (3 d, s, Ph), 137.4 (d, C-4′), 148.8 (d, C-6′),
149.2 (s, C-2′), 153.4 (s, CNH), 163.3 (s, CONH), 168.0
(s, CO2Et), 197.3 (s, COCH3) ppm. HRMS (ESI-TOF): m/z calcd for C19H18N2O4Na [M + Na]+: 361.1164;
found: 361.1166. Anal. calcd for C19H18N2O4 (338.4):
C, 67.44; H, 5.36; N, 8.28; found: C, 66.80; H, 5.28; N, 8.16.
11 Whether already the α-acyl-β-enamino
esters 3 were isolated as mixtures of E and Z isomers
(no isomerization could be detected by NMR spectroscopy), or isomerization
occurred during N-acylation or chromatography of the β-keto-enamides 7 is currently unclear.
2-PyCOBt = 1H-1,2,3-benzotriazol-1-yl(pyrid-2-yl)-methanone;
for its preparation, see:
12a
Katritzky AR.
He H.-Y.
Suzuki K.
J.
Org. Chem.
2000,
65:
8210
For a review on N-acylbenzotriazoles,
see:
12b
Katritzky AR.
Suzuki K.
Wang Z.
Synlett
2005,
1656
13
Takaya H.
Naota T.
Murahashi S.-I.
J.
Am. Chem. Soc.
1998,
120:
4244
14 For a review on aryl and alkenyl
nonaflates, see: Högermeier J.
Reissig H.-U.
Adv. Synth. Catal.
2009,
351:
2747
15
Representative
Procedure for the Cyclization of β-Ketoenamides
Followed by Nonaflation of the Crude Product - 5-Ethoxycarbonyl-6-phenyl-2,2′-bipyrid-4-yl Nonaflate
(9a)
TMSOTf (0.94 mL, 5.17 mmol) was added dropwise
to a solution of β-ketoenamide 7a (350
mg, 1.03 mmol) and DIPEA (0.68 mL, 4.14 mmol) in DCE (25 mL) under
argon. The mixture was stirred for 5 d at 90 ˚C
in a sealed tube. All volatile components were removed under reduced
pressure, the crude product was dissolved in THF (15 mL) and treated with
an excess of NaH (309 mg, 7.73 mmol, 60% in mineral oil,
washed with hexane prior to use). After addition of Nf2O (778
mg, 1.34 mmol) the mixture was stirred overnight at r.t. and then
quenched by slow addition of sat. aq NH4Cl solution (20
mL). The layers were separated, and the aqueous layer was extracted
three times with CH2Cl2 (20 mL). The combined
organic layers were dried with Na2SO4, and
after filtration the solvent was removed under reduced pressure.
Purification of the crude product by flash chromatography (silica
gel, hexane-EtOAc = 40:1 → 20:1) afforded
434 mg (70%) of 9a as colorless
oil. IR (ATR): 3070 (=CH), 2985, 2940-2930, 2905
(CH), 1735 (C=O), 1600, 1575, 1545 (C=C, C=N)
cm-¹. ¹H NMR (500
MHz, CDCl3): δ = 1.15
(t, J = 7.1
Hz, 3 H, CH3), 4.26 (q, J = 7.1 Hz,
2 H, OCH2), 7.40 (ddd, J = 7.8,
4.7, 0.8 Hz, 1 H, 5′-H), 7.47-7.50, 7.71-7.74
(2 m, 3 H, 2 H, Ph), 7.85 (td, J = 7.8, 1.3
Hz, 1 H, 4′-H), 8.49 (s, 1 H, 3-H), 8.54 (dbr, J = 7.8 Hz, 1
H, 3′-H), 8.74 (ddd, J = 4.7,
1.3, 0.8 Hz, 1 H, 6′-H) ppm. ¹³C
NMR (126 MHz, CDCl3): δ = 13.5
(q, CH3), 62.6 (t, OCH2), 111.2 (d, C-3),
121.7 (d, C-5), 121.9 (s, C-3′), 125.1 (d, C-5′),
128.5, 128.6, 129.6 (3 d, Ph), 137.2 (d, C-4′), 138.5 (s,
Ph), 149.4 (d, C-6′), 153.5, 155.0, 159.1, 159.4 (4 s,
C-2, C-2′, C-4, C-6), 164.2 (s, CO2Et) ppm. ¹9F
NMR (471 MHz, CDCl3): δ = -125.6
(td, J = 13.7,
4.4 Hz, 2 F, CF2), -120.5 (mc, 2
F, CF2), -108.7 (t, J = 13.7
Hz, 2 F, CF2), -80.5 (t, J = 9.7
Hz, 3 F, CF3) ppm. HRMS (ESI-TOF): m/z calcd
for C23H16F9N2O5S [M + H]+:
603.0636; found: 603.0629. Anal. calcd for C23H15F9N2O5S
(602.4): C, 45.86; H, 2.51; N, 4.65; S, 5.32. Found: C, 45.75; H,
2.51; N, 4.69; S, 5.47.
16 Nf2O = nonafluorobutanesulfonic
acid anhydride; nonaflation employing nonafluorobutanesulfonyl fluoride (NfF)
was slow and incomplete.
17
Cacchi S.
Ciattini PG.
Morera E.
Otar G.
Tetrahedron Lett.
1986,
27:
5541