References and Notes
1a
Maga JA.
Sizer CE.
J.
Agric. Food Chem.
1973,
21:
22
1b
Arnoldi A.
Arnoldi C.
Baldi O.
Griffini A.
J. Agric. Food Chem.
1988,
36:
988
1c
Sumoto K.
Irie M.
Mibu N.
Miyano S.
Nakashima Y.
Watanabe K.
Yamaguchi T.
Chem.
Pharm. Bull.
1991,
39:
792
1d
Eitelman SJ.
Feather MS.
Carbohydr.
Res.
1979,
77:
205
1e
Candiano G.
Ghiggeri GM.
Gusmano R.
Zetta L.
Benfenati E.
Icardi G.
Carbohydr. Res.
1988,
184:
67
1f
Kerns RJ.
Tpoida T.
Linhardt RJ.
J. Carbohyr. Chem.
1996,
15:
581
1g
Rohovec J.
Kotek J.
Peters JA.
Maschmeyer T.
Eur. J. Org. Chem.
2001,
3299
For recent examples, see:
2a
Mondal R.
Ko S.
Bao Z.
J.
Mater. Chem.
2010,
20:
10568
2b
Saito R.
Matsumura Y.
Suzuki S.
Okazaki N.
Tetrahedron
2010,
66:
8273
2c
Wriedt M.
Jeß I.
Näther C.
Eur.
J. Inorg. Chem.
2009,
363
2d
Liu H.-Y.
Wu H.
Ma J.-F.
Yang J.
Liu Y.-Y.
Dalton Trans.
2009,
38:
7957
2e
Goher MAS.
Bitschnau B.
Sodin B.
Gspan C.
Mautner FA.
J. Mol. Struct.
2008,
886:
32
2f
Chang S.-Y.
Kavitha J.
Li
S.-W.
Hsu C.-S.
Chi Y.
Yeh Y.-S.
Chou P.-T.
Lee
G.-H.
Carty AJ.
Tao Y.-T.
Chien C.-H.
Inorg.
Chem.
2006,
45:
137
2g
Chang CH.
Yun MH.
Choi WJ.
Synth. Met.
2004,
145:
1
For selected examples, see:
3a
Bobek M.
Bloch A.
J. Med. Chem.
1972,
15:
164
3b
Street LJ.
Baker R.
Book T.
Reeve AJ.
Saunders J.
Willson T.
Marwood RS.
Patel S.
Freedman SB.
J.
Med. Chem.
1992,
35:
295
3c
Seitz LE.
Suling WJ.
Reynolds RC.
J. Med. Chem.
2002,
45:
5604
3d
Niculescu-Duvaz I.
Roman E.
Whittaker SR.
Friedlos F.
Kirk R.
Scanlon IJ.
Davies LC.
Niculescu-Duvaz D.
Marais R.
Springer
CJ.
J. Med. Chem.
2008,
51:
3261
3e
Cheng X.-C.
Liu
X.-Y.
Xu W.-F.
Guo X.-L.
Zhang N.
Song Y.-N.
Bioorg. Med. Chem.
2009,
17:
3018
3f
Zitko J.
Dolezai M.
Svobodova M.
Vejsova M.
Kucera R.
Jilek P.
Bioorg. Med. Chem.
2011,
19:
1471
3g
Dubuisson MLN.
Rees J.-F.
Brynaert-Merchand J.
Mini-Rev. Med. Chem.
2004,
4:
159
4a
Moser BR.
J. Nat. Prod.
2008,
71:
487
4b
Lee S.
LaCour TG.
Fuchs P.
Chem.
Rev.
2009,
109:
2275
5
Chill L.
Aknin M.
Kashman Y.
Org.
Lett.
2003,
14:
2433
6a
Durán R.
Zubía E.
Ortega MJ.
Naranjo S.
Salvá J.
Tetrahedron
1999,
55:
13225
6b
Saito R.
Tokita M.
Uda K.
Ishikawa C.
Satoh M.
Tetrahedron
2009,
65:
3019
7a
Dunn G.
Newbold GT.
Spring FS.
J. Chem. Soc.
1949,
2586
7b
Yokotsuka T.
Sasaki M.
Kikuchi K.
Asao Y.
Nobuhara A.
Nippon
Nogeikagaku Kaishi
1967,
41:
32
7c
Sasaki M.
Asao Y.
Yokotsuka T.
Nippon Nogeikagaku
Kaishi
1968,
42:
288
7d
Tatsuka K.
Tsuchiya S.
J. Antibiot.
1972,
25:
674
7e
Tatsuka K.
Fujimoto K.
Yamashita M.
Tsuchiya T.
Umeyama S.
Umeyama H.
J. Antibiot.
1973,
26:
606
8
Yong W.
Gloer JB.
Scott JA.
Malloch D.
J. Nat. Prod.
1995,
58:
93
9a
Bousquet JF.
Belhomme de Franqueville H.
Kollmann A.
Fritz R.
Can. J. Bot.
1980,
58:
2575
9b
Devys M.
Barbier M.
Kollmann A.
Bousquet J.-F.
Tetrahedron Lett.
1982,
23:
5409
10
Huang S.-X.
Powell E.
Rajski SR.
Zhao L.-X.
Jiang C.-L.
Duan Y.
Xu W.
Shen B.
Org. Lett.
2010,
12:
3525
11
Shaaban M.
Maskey RP.
Wagner-Döbler I.
Laatsch H.
J. Nat.
Prod.
2002,
65:
1660
12
Beck HC.
Hansen AM.
Lauritsen FR.
FEMS Microbiol. Lett.
2003,
220:
67
13
Mahboobi S.
Sellmer A.
Burgemeister T.
Lyssenko A.
Schollmeyer D.
Monatsh.
Chem.
2004,
135:
333
14a
Fruit C.
Turck A.
Plé N.
Mojovic L.
Quéguiner G.
Tetrahedron
2001,
57:
9429
14b
Buron F.
Plé N.
Turck A.
Queguiner G.
J. Org. Chem.
2005,
70:
2616
15a
Charette AB.
Focken T.
Org.
Lett.
2006,
8:
2985
15b
Montserrat Martínez M.
Sarandeses LA.
Pérez Sestelo J.
Tetrahedron Lett.
2007,
48:
8536
15c
Peña-López M.
Montserrat Martínez M.
Sarandeses LA.
Pérez Sestelo J.
Org. Lett.
2010,
12:
852
For biomimetic synthetic studies
towards tri- and tetrasubstituted pyrazines, see:
16a
Okada Y.
Taguchi H.
Yokoi T.
Tetrahedron
Lett.
1996,
37:
2249
16b
Okada Y.
Taguchi H.
Yokoi T.
Chem.
Pharm. Bull.
1996,
44:
2259
16c
Buron F.
Turck A.
Plé N.
Bischoff L.
Marsais F.
Tetrahedron
Lett.
2007,
48:
4327
Several syntheses of pyrazines from diketopiperazines also
exist:
16d
Ohta A.
Kojima A.
Saito T.
Kobayashi K.
Saito H.
Wakabayashi K.
Honma S.
Sakuma C.
Aoyagi Y.
Heterocycles
1991,
32:
923
16e
Ohta A.
Kojima A.
Aoyagi Y.
Heterocycles
1990,
31:
1665
16f
Candelon N.
Shinkaruk S.
Bennetau B.
Bennetau-Pelissero B.
Dumartin M.-L.
Deguil M.
Babin P.
Tetrahedron
2010,
66:
2463
16g
Chaignaud M.
Gillaizeau I.
Ouhamou N.
Coudert G.
Tetrahedron
2008,
64:
8059
17
Nawrath T.
Dickschat JS.
Kunze B.
Schulz S.
Chem. Biodiv.
2010,
7:
2129
18 Tryptophan diketopiperazine is a
known natural product called fellutanine A: Kozlovsky AG.
Vinokurova NG.
Adanin VM.
Burkhardt H.-MD.
Gräfe U.
J. Nat. Prod.
2000,
63:
698
19 We employed the Cbz-derivative 14 as the Cbz protecting group can be removed
under mild conditions, whereas it was found the acid or base needed
to remove either the tert-butyloxycarbonyl
(Boc) or fluorenylmethyloxycarbonyl (Fmoc) protecting groups degraded
the unmasked amino aldehyde 13. Full details
will be reported in due course.
20a
Rodriguez M.
Lignon M.-L.
Galas M.-C.
Fulcrand P.
Mendre C.
Aumelas A.
Laur J.
Martinez J.
J.
Med. Chem.
1987,
30:
1366
20b
Shao YM.
Yang W.-B.
Peng H.-P.
Hsu M.-F.
Tsai K.-C.
Kuo T.-H.
Wang AH.-J.
Liang P.-H.
Lin C.-H.
Yang A.-S.
Wong C.-H.
ChemBioChem
2007,
8:
1654
Aldehyde 14 has
been employed as an intermediate in alkaloid syntheses, but has
not been characterized due to its poor stability. See:
21a
Dyke H.
Steel PG.
Thomas EJ.
J. Chem. Soc., Perkin Trans. 1
1989,
525
21b
Herranz R.
Vinuesa S.
Pérez C.
García-López MT.
De Ceballos ML.
del Rio J.
J. Chem. Soc., Perkin Trans. 1
1991,
2749
21c In our hands, 14 was stable at 0 ˚C under argon
for 2 weeks.
22 (S)-Benzyl
1-(indol-3-yl)-3-oxopropan-2-ylcarbamate (14):²¹ To
a stirred solution of Weinreb amide 15 (416
mg, 1.1 mmol) in Et2O (60 mL) was added LiAlH4 (209
mg, 5.5 mmol) at 0 ˚C and the reaction mixture was stirred
for 2 h at this temperature. The reaction mixture was quenched with H2O
(10 mL), filtered through Celite® and the cake
was washed with H2O (40 mL) and then with Et2O
(20 mL). The filtrate was extracted with Et2O (3 × 30
mL) and the combined organic layers were washed with HCl acid (1
M, 3 × 30 mL), sat. NaHCO3 solution (3 × 30
mL), brine (30 mL), dried (MgSO4), filtered and concentrated
in vacuo. Purification by flash chromatography using EtOAc-hexanes (1:1, R
f
0.5)
as eluent gave the title compound (320 mg, 0.99 mmol, 90%)
as a yellow oil; [α]D
²¹ +30.1
(c = 1.0, CH2Cl2). IR
(neat): 3347, 2924, 1704, 1456, 1513, 1373, 1341, 1244, 1045, 845,
744, 698 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 2.91
(m, 1 H, CHβ
H
βCHα),
3.21 (m, 1 H, CH
βHβCHα), 4.25
(s, 1 H, CHα), 5.03 (m, 2 H, CH
2Ph),
6.96 (t, J = 6.8 Hz, 1 H, ArH),
7.08 (m, 1 H, ArH), 7.16 (s, 1 H, ArH), 7.33 (m, 6 H, ArH), 7.54
(d, J = 8.0 Hz, 1 H, ArH), 7.73
(d, J = 7.6 Hz, 1 H, NH), 9.59
(s, 1 H, CHO), 10.86 (s, 1 H, NH). ¹³C NMR
(100 MHz, DMSO-d
6): δ = 23.7
(CH2), 60.4 (CH), 65.5 (CH2), 109.5 (C), 111.3
(CH), 118.1 (CH), 118.3 (CH), 120.9 (CH), 123.7 (CH), 127.6 (CH),
127.7 (2 × CH), 128.2 (CH), 128.3 (2 × CH), 136.1
(C), 136.8 (C), 156.1 (CONH), 201.2 (CHO). MS: m/z (ESI+, %) = 323
(30) [M + H]+, 305 (65),
261 (30), 130 (10), 91 (3). HRMS: m/z [M + H]+ calcd for
C19H18N2O3 + H:
323.1380; found: 323.1383.
23 2,5-Bis(indol-3-ylmethyl)pyrazine
(11):¹¹,²4 To
a solution of aldehyde 14 (85 mg, 0.26
mmol) in MeOH-CH2Cl2-AcOH (2:2:1,
5 mL) was added Pearlman’s catalyst [Pd(OH)2,
20% on carbon, ca.10 mg] and the reaction mixture
was stirred under an atmosphere of hydrogen for 2 h. The hydrogen balloon
was removed and the reaction mixture was stirred for a further 15
h while open to the air, filtered through Celite® and
the filtrate was concentrated in vacuo. Purification by flash chromatography
using EtOAc-hexanes (1:1, R
f
0.46) as eluent gave the title
compound (32 mg, 0.095 mmol, 73%) as a colorless oil. IR
(neat): 3223, 2955, 2912, 2850, 1659, 1493, 1458, 1375, 1343, 1259,
1095, 1044, 970, 922, 797, 732, 589 cm-¹.
For ¹H NMR and ¹³C NMR
data see, Table
[¹]
.
MS: m/z (ESI+, %) = 339
(100)
[M + H]+,
282 (20), 242 (15), 157 (2). HRMS: m/z [M + H]+ calcd
for C22H18N4 + H: 339.1604;
found: 339.1593.
24 See Supplementary Information for ¹H
NMR and ¹³C NMR spectra of synthetic 11.