Synlett 2011(9): 1288-1292  
DOI: 10.1055/s-0030-1260533
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Stereoselective Synthesis of Pyrrolo[1,2-a]indoles from Allenes in PEG-400 as the Reaction Medium

M. Phani Pavan, K. C. Kumara Swamy*
School of Chemistry, University of Hyderabad, Hyderabad 500046, A.P., India
Fax: +91(40)23012460; e-Mail: kckssc@yahoo.com; e-Mail: kckssc@uohyd.ernet.in;
Further Information

Publication History

Received 13 January 2011
Publication Date:
20 April 2011 (online)

Abstract

Base-catalyzed domino cyclization of allenes with 3-chloro-2-formylindoles in PEG-400 was investigated. Pyrroloindoles were formed stereoselectively as single products. The structure of the product depends on the type of allene used. Two compounds have been characterized by single crystal X-ray diffraction.

    References and Notes

  • 1a Orlemans EOM. Verboom W. Scheltinga MW. Reinhoudt DN. Lelieveld P. Fiebig HH. Winterhalter BR. Double JA. Bibby MC. J. Med. Chem.  1989,  32:  1612 
  • 1b Galm U. Hanger MH. Lanen SGV. Ju J. Thorson JS. Shen B. Chem. Rev.  2005,  105:  739 
  • 1c Paris D. Cottin M. Demonchaux P. Augert G. Dupassieux P. Lenoir P. Peck MJ. Jasserand D. J. Med. Chem.  1995,  38:  669 
  • 1d Wilson RM. Thaji RK. Bergman RG. Ellman JA. Org. Lett.  2006,  8:  1745 
  • 1e Fernandez LS. Buchanan MS. Carroll AR. Feng YJ. Quinn RJ. Avery VM. Org. Lett.  2009,  11:  329 
  • 2a Molander GA. Schmitt MH. J. Org. Chem.  2000,  65:  3767 
  • 2b Tanaka M. Ubukata M. Matsuo T. Yasue K. Matsumoto K. Kajimoto Y. Ogo T. Inaba T. Org. Lett.  2007,  9:  3331 
  • 3a Flitsch W. Lubisch W. Chem. Ber.  1984,  117:  1424 
  • 3b Padwa A. Fryxell GE. Gasdaska JR. Venakatraman MK. Wong GS. J. Org. Chem.  1989,  54:  644 
  • 3c Coleman RS. Chen W. Org. Lett.  2001,  3:  1141 
  • 3d Miki Y. Hachiken H. Kawazoe A. Tsuzaki Y. Yanase N. Heterocycles  2001,  55:  1291 
  • 3e Yavari I. Adib M. Sayahi MH. J. Chem. Soc., Perkin Trans. 1  2002,  1517 
  • 3f Borah HN. Deb ML. Boruah RC. Bhuvan PJ. Tetrahedron lett.  2005,  46:  3391 
  • 3g Abbiati G. Casoni A. Canevari V. Nava D. Rossi E. Org. Lett.  2006,  8:  4839 
  • 3h Manian RDRS. Jayashankaran J. Raghunanthan R. Synlett  2007,  874 
  • 3i Hong L. Sun W. Liu C. Wang L. Wang R. Chem. Eur. J.  2010,  16:  440 
  • For selected recent reviews, see:
  • 4a Yamamoto Y. Radhakrishnan U. Chem. Soc. Rev.  1999,  28:  199 
  • 4b Lu X. Zhang C. Xu Z. Acc. Chem. Res.  2001,  34:  535 
  • 4c Bates RW. Satcharoen V. Chem. Soc. Rev.  2002,  31:  12 
  • 4d Wei L.-L. Xiong H. Hsung RP. Acc. Chem. Res.  2003,  36:  773 
  • 4e Ma S. Acc. Chem. Res.  2003,  36:  701 
  • 4f Hoffmann-Röder A. Krause N. Angew. Chem. Int. Ed.  2004,  43:  1196 
  • 4g Modern Allene Chemistry   Krause N. Hashmi ASK. Wiley-VCH; Weinheim: 2004. 
  • 4h Brandsma L. Synthesis of Acetylenes, Allenes and Cumulenes: Methods and Techniques   Elsevier; Oxford: 2004. 
  • 4i Ma S. Chem. Rev.  2005,  105:  2829 
  • 4j Nair V. Menon RS. Sreekanth AR. Abhilash N. Biju AT. Acc. Chem. Res.  2006,  39:  520 
  • 4k Ma S. Aldrichimica Acta  2007,  40:  91 
  • 4l Pacheco MC. Purser S. Gouverneur V. Chem. Rev.  2008,  108:  1943 
  • 4m Brasholz M. Reissig H.-U. Zimmer R. Acc. Chem. Res.  2009,  42:  45 
  • 4n Ma S. Acc. Chem. Res.  2009,  42:  1679 
  • 4o Deagostino A. Prandi C. Tabasso S. Venturello P. Molecules  2010,  15:  2667 
  • 5a Chakravarty M. Kumara Swamy KC. J. Org. Chem.  2006,  71:  9128 
  • 5b Kumara Swamy KC. Balaraman E. Satish Kumar N. Tetrahedron  2006,  62:  10152 
  • 5c Chakravarty M. Kumara Swamy KC. Synthesis  2007,  3171 
  • 5d Yu F. Lian X. Ma S. Org. Lett.  2007,  9:  1703 
  • 5e Bravo-Altamirano K. Abrunhosa-Thomas I. Montchamp J.-L. J. Org. Chem.  2008,  73:  2292 
  • 5f Panossian A. Fleury-Bregeot N. Marinetti A. Eur. J. Org. Chem.  2008,  3826 
  • 5g Chakravarty M. Bhuvan Kumar NN. Sajna KV. Kumara Swamy KC. Eur. J. Org. Chem.  2008,  4500 
  • 5h Brady PB. Morris EM. Fenton OS. Sculimbrene BR. Tetrahedron Lett.  2009,  50:  975 
  • 5i Hirata Y. Inui T. Nakao Y. Hiyama T. J. Am. Chem. Soc.  2009,  131:  6624 
  • 5j Li W. Shi M. Eur. J. Org. Chem.  2009,  270 
  • 5k Zhou C. Fang Z. Fu C. Ma S. J. Org. Chem.  2009,  74:  2887 
  • 5l Phani Pavan M. Chakravarty M. Kumara Swamy KC. Eur. J. Org. Chem.  2009,  5927 
  • 5m Sajna KV. Kotikalapudi R. Chakravarty M. Bhuvan Kumar NN. Kumara Swamy KC. J. Org. Chem.  2011,  76:  920 
  • For reactions of allenic esters and ketones with salicyl N-tosylimines or aldehydes, see:
  • 6a Shi Y.-L. Shi M. Org. Lett.  2005,  7:  3057 
  • 6b Zhao G.-L. Shi Y.-L. Shi M. Org. Lett.  2005,  7:  4527 
  • 6c Shi M. Dai L.-Z. Shi Y.-L. Zhao G.-L. Adv. Synth. Catal.  2006,  348:  967 
  • 6d Dai L.-Z. Shi Y.-L. Zhao G.-L. Shi M. Chem. Eur. J.  2007,  13:  3701 
  • 6e Meng X. Huang Y. Chen R. Org. Lett.  2009,  11:  137 
  • 6f Meng X. Huang Y. Zhao H. Xie P. Ma J. Chen R. Org. Lett.  2009,  11:  991 
  • 6g Sun Y.-W. Guan X.-Y. Shi M. Org. Lett.  2010,  12:  5664 
  • 7 In our earlier work on salicylaldehydes we faced some difficulties while using K2CO3 as the base, although yields were very good, see: Bhuvan Kumar NN. Nagarjuna Reddy M. Kumara Swamy KC. J. Org. Chem.  2009,  74:  5395 
  • 8 Majo VJ. Perumal PT. J. Org. Chem.  1996,  61:  6523 
  • 9a Guillemin JC. Savignac P. Denis JM. Inorg. Chem.  1991,  30:  2170 
  • 9b Iorga B. Eymery F. Carmichael D. Savignac P. Eur. J. Org. Chem.  2000,  3103 
  • 9c Bhuvan Kumar NN. Chakravarty M. Satish Kumar N. Sajna KV. Kumara Swamy KC. J. Chem. Sci.  2009,  121:  23 
  • 10 Allenes 1d-f, 3a and 3b are new, but were prepared by using described procedures.9,¹¹ See also: Phani Pavan M. Dissertation   University of Hyderabad; India: 2010. 
  • 11a Lang RW. Hansen H.-J. Org. Synth., Coll. Vol. VII   John Wiley & Sons; London: 1990.  p.232 
  • 11b Ma S. Jiao N. Zhao S. Hou H. J. Org. Chem.  2002,  67:  2837 
  • 11c Scheufler F. Maier ME. Eur. J. Org. Chem.  2000,  3945 
  • X-ray data for compounds 11 (CCDC 806280) and 12 (CCDC 806281) were collected on OXFORD diffractometer using Mo-Kα (λ = 0.71073 Å) radiation. The structures were solved and refined by standard methods, see:
  • 13a Sheldrick GM. SADABS, Siemens Area Detector Absorption Correction   University of Göttingen; Germany: 1996. 
  • 13b Sheldrick GM. SHELX-97: A program for crystal structure solution and refinement   University of Göttingen; Germany: 1997. 
  • 13c Sheldrick GM. SHELXTL NT Crystal Structure Analysis Package   Version 5:  Bruker AXS Analytical X-ray System; WI (USA): 1999. 
  • 14 The requirement for a good electron-withdrawing substituent to increase the reactivity of the indole has been reported, see: Pintori DG. Greaney MF. J. Am. Chem. Soc.  2011,  133:  1209 
12

Representative procedure for the preparation of pyrrolo-indole 5: To the allene (0.200 g, 0.76 mmol), 3-chloro-2-formylindole4 (4; 0.176 g, 98 mmol) and K2CO3 (0.021 g, 0.15 mmol) in a 25 mL round-bottomed flask, was added PEG-400 (2 mL) and the contents were heated at 90 ˚C for 4 h. The reaction mixture was quenched with H2O (5 mL) and extracted with CH2Cl2 (3 × 25 mL). The whole organic layer was washed with H2O (3 × 25 mL), dried (Na2SO4), filtered, concentrated, and the products were isolated by column chromatography (hexane-EtOAc, 1:4) on silica gel. Yield: 0.25 g (74%); mp 210-214 ˚C. IR (KBr): 3316, 1634, 1601, 1443, 1327, 1308, 1061 cm. ¹H NMR (400 MHz, CDCl3): δ = 0.68 (s, 3 H), 0.97 (s, 3 H), 3.53-3.56 (m, 1 H), 3.67-3.70 (m, 1 H), 3.95-4.00 (m, 2 H), 4.07-4.16 (m, 2 H), 5.43-5.47 (2 H), 6.64-7.45 (m, 9 H). ¹³C NMR (100 MHz, CDCl3 + 5%MeOH): δ = 20.7, 21.3, 32.1, 62.4, 75.7, 76.1, 105.3 (d, J P-C = 190.4 Hz), 114.5, 118.0, 122.3, 123.5, 128.2, 128.7, 131.0, 131.3, 131.7, 135.6, 142.0, 150.9 (d, J P-C = 27.3 Hz). ³¹P NMR (160 MHz, CDCl3): δ = 15.1. LC/MS:
m/z = 442 [M - 2]+, 444 [M]+. Anal. Calcd for C23H23ClNO4P: C, 62.24; H, 5.22; N, 3.16. Found: C, 62.35; H, 5.28; N, 3.22. Spectroscopic and analytical data for the remaining pyrroloindoles 6-14 are given in the Supporting Information