References and Notes
For selected recent examples, see:
1a
Qiu ZJ.
Yu HT.
Li JB.
Wang Y.
Zhang Y.
Chem.
Commun.
2009,
3342
1b
Lee CW.
Song YH.
Lee Y.
Ryu KS.
Chi KW.
Chem.
Commun.
2009,
6282
1c
Natali M.
Aakeroy C.
Desper J.
Giordani S.
Dalton Trans.
2010,
39:
8269
1d
Compain JD.
Deniard P.
Dessapt R.
Dolbecq A.
Oms O.
Secheresse F.
Marrot J.
Mialane P.
Chem. Commun.
2010,
46:
7733
For selected recent examples, see:
2a
Shiraishi Y.
Miyamoto R.
Hirai T.
Org.
Lett.
2009,
11:
1571
2b
Chen JR.
Yang DY.
Org.
Lett.
2009,
11:
1769
2c
Shiraishi Y.
Itoh M.
Hirai T.
Phys.
Chem. Chem. Phys.
2010,
12:
13737
2d
Chen Q.
Zhang DQ.
Zhang GX.
Yang XY.
Feng Y.
Fan QH.
Zhu DB.
Adv. Funct.
Mater.
2010,
20:
3244
For selected recent examples, see:
3a
Walsh Z.
Scarmagnani S.
Benito-Lopez F.
Abele S.
Nie FQ.
Slater C.
Byrne R.
Diamond D.
Paull B.
Macka M.
Sensor.
Actuat. B-Chem.
2010,
148:
569
3b
Kahle I.
Spange S.
J. Phys. Chem. C
2010,
114:
15448
3c
Deniz E.
Tomasulo M.
DeFazio RA.
Watson BD.
Raymo FM.
Phys. Chem. Chem. Phys.
2010,
12:
11630
3d
Natali N.
Soldi L.
Giordani S.
Tetrahedron
2010,
66:
7612
3e
Chen Q.
Feng Y.
Zhang DQ.
Zhang GX.
Fan QH.
Sun SN.
Zhu DB.
Adv.
Funct. Mater.
2010,
20:
36
3f
Shao N.
Jin JY.
Wang H.
Zheng J.
Yang
RH.
Chan WH.
Abliz Z.
J.
Am. Chem. Soc.
2010,
132:
725
3g
Park IS.
Jung YS.
Lee KJ.
Kim JM.
Chem. Commun.
2010,
46:
2859
3h
Kojima M.
Nakanishi T.
Hirai Y.
Yabu H.
Shimomura M.
Chem.
Commun.
2010,
46:
3970
3i
Hammarson M.
Andersson J.
Li SM.
Lincoln P.
Andreasson J.
Chem.
Commun.
2010,
46:
7130
3j
Bayer C.
Wagenknecht HA.
Synlett
2010,
1371
4a
Wu YC.
Liron M.
Zhu JP.
J. Am. Chem. Soc.
2008,
130:
7148
4b
Wu YC.
Zhu JP.
Org. Lett.
2009,
11:
5558
4c
Wu YC.
Bernadat G.
Masson G.
Couturier C.
Schlama T.
Zhu JP.
J. Org. Chem.
2009,
74:
2046
4d
Wu YC.
Liu L.
Li HJ.
Wang D.
Chen YJ.
J.
Org. Chem.
2006,
71:
6592
4e
Wu YC.
Zou XM.
Hu FZ.
Yang HZ.
J. Heterocycl. Chem.
2005,
42:
609
4f
Wu YC.
Zou XM.
Hu FZ.
Yang HZ.
Chin. Chem. Lett.
2005,
16:
1143
4g
Wu YC.
Song HB.
Liu L.
Wang D.
Chen YJ.
Acta
Crystallogr., Sect. E: Struct. Rep. Online
2005,
61:
o1590
4h
Wu YC.
Liu L.
Wang D.
Chen YJ.
J. Heterocycl. Chem.
2006,
43:
949
4i
Wu YC.
Chen YJ.
Li HJ.
Zou XM.
Hu FZ.
Yang HZ.
J. Fluorine Chem.
2006,
127:
409
4j
Wu YC.
Li HJ.
Liu L.
Wang D.
Yang HZ.
Chen YJ.
J. Fluoresc.
2008,
18:
357
4k
Wu YC.
Li HJ.
Yang HZ.
Org. Biomol.
Chem.
2010,
8:
3394
4l
Liu Z.
Liu L.
Shafiq Z.
Wu YC.
Wang D.
Chen YJ.
Synthesis
2007,
1961
4m
Zhao JL.
Liu L.
Zhang HB.
Wu YC.
Wang D.
Chen YJ.
Synlett
2006,
96
5a
Wu YC.
Li HJ.
Liu L.
Liu Z.
Wang D.
Chen YJ.
Org.
Biomol. Chem.
2011,
9:
2868
5b
Wu YC.
Li HJ.
Liu L.
Demoulin N.
Liu Z.
Wang D.
Chen YJ.
Adv. Synth.
Catal.
2011,
353:
907
6
Wu YC.
Liu L.
Liu YL.
Wang D.
Chen YJ.
J.
Org. Chem.
2007,
72:
9383
7 CCDC 800884 contains the supplementary
crystallographic data of spiropyran 3i for
this paper. These data can be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
8
Synthetic Procedure
for Spiropyrans 3
A solution of (1R,2R)-1,2-diphenylethane-1,2-diamine (1h, 42.5mg, 0.2 mmol) and hemiacetal esters 2a (67.7mg, 0.2 mmol) in CH2Cl2 (2
mL) was stirred at reflux for 3 d. The mixture was concentrated,
and the residue was purified
by column chromatography
over silica gel to afford 2H-chromene-piperazin-2-one
spiropyran 3c (85.1 mg) in 85% yield
as a single diastereomer. White solid; mp 136-137 ˚C. [α]D
²4 +101.27
(c 2.0, MeCO2Et). ¹H
NMR (300 MHz, CDCl3): δ = 7.43-7.05
(m, 18 H), 5.95 (s, 2 H), 4.67 (s, 2 H), 2.98 (br s, 1 H), 1.18
(s, 9 H). ¹³C NMR (75 MHz, CDCl3): δ = 167.2,
148.1, 144.1, 138.0, 137.9, 137.8, 137.6, 129.0, 128.6, 128.5, 128.4,
128.4, 128.3, 128.2, 128.1, 127.7, 126.6, 123.3, 120.4, 120.2, 117.0,
86.9, 65.8, 58.6, 34.3, 31.4. FT-IR (KBr): 3350, 3033, 2361, 1693,
1489, 1245, 921, 700 cm-¹. Anal. Calcd
for C34H32N2O2: C, 81.57;
H, 6.44; N, 5.60. Found: C, 81.43; H, 6.67; N, 5.82.