Synlett 2011(11): 1573-1578  
DOI: 10.1055/s-0030-1260766
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Facile Synthesis of Spiropyrans from Chromene Hemiacetal Esters and Bifunctional Nucleophiles

Yan-Chao Wu*a,b, Hui-Jing Lia, Li Liua, Nicolas Demoulinb, Zhe Liua, Dong Wanga, Yong-Jun Chen*a
a Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China
Fax: +86(10)62554449; e-Mail: ycwu@iccas.ac.cn; e-Mail: yjchen@iccas.ac.cn;
b Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif-sur-Yvette Cedex, France
Further Information

Publication History

Received 13 February 2011
Publication Date:
26 May 2011 (online)

Abstract

Facile synthesis of several new kinds of spiropyrans has been accomplished through the condensation of chromene hemi­acetal esters with bifunctional nuclephiles, in which previously nonpractical amination and amidation processes help each other and all become practical processes of the corresponding tandem reactions.

    References and Notes

  • For selected recent examples, see:
  • 1a Qiu ZJ. Yu HT. Li JB. Wang Y. Zhang Y. Chem. Commun.  2009,  3342 
  • 1b Lee CW. Song YH. Lee Y. Ryu KS. Chi KW. Chem. Commun.  2009,  6282 
  • 1c Natali M. Aakeroy C. Desper J. Giordani S. Dalton Trans.  2010,  39:  8269 
  • 1d Compain JD. Deniard P. Dessapt R. Dolbecq A. Oms O. Secheresse F. Marrot J. Mialane P. Chem. Commun.  2010,  46:  7733 
  • For selected recent examples, see:
  • 2a Shiraishi Y. Miyamoto R. Hirai T. Org. Lett.  2009,  11:  1571 
  • 2b Chen JR. Yang DY. Org. Lett.  2009,  11:  1769 
  • 2c Shiraishi Y. Itoh M. Hirai T. Phys. Chem. Chem. Phys.  2010,  12:  13737 
  • 2d Chen Q. Zhang DQ. Zhang GX. Yang XY. Feng Y. Fan QH. Zhu DB. Adv. Funct. Mater.  2010,  20:  3244 
  • For selected recent examples, see:
  • 3a Walsh Z. Scarmagnani S. Benito-Lopez F. Abele S. Nie FQ. Slater C. Byrne R. Diamond D. Paull B. Macka M. Sensor. Actuat. B-Chem.  2010,  148:  569 
  • 3b Kahle I. Spange S. J. Phys. Chem. C  2010,  114:  15448 
  • 3c Deniz E. Tomasulo M. DeFazio RA. Watson BD. Raymo FM. Phys. Chem. Chem. Phys.  2010,  12:  11630 
  • 3d Natali N. Soldi L. Giordani S. Tetrahedron  2010,  66:  7612 
  • 3e Chen Q. Feng Y. Zhang DQ. Zhang GX. Fan QH. Sun SN. Zhu DB. Adv. Funct. Mater.  2010,  20:  36 
  • 3f Shao N. Jin JY. Wang H. Zheng J. Yang RH. Chan WH. Abliz Z. J. Am. Chem. Soc.  2010,  132:  725 
  • 3g Park IS. Jung YS. Lee KJ. Kim JM. Chem. Commun.  2010,  46:  2859 
  • 3h Kojima M. Nakanishi T. Hirai Y. Yabu H. Shimomura M. Chem. Commun.  2010,  46:  3970 
  • 3i Hammarson M. Andersson J. Li SM. Lincoln P. Andreasson J. Chem. Commun.  2010,  46:  7130 
  • 3j Bayer C. Wagenknecht HA. Synlett  2010,  1371 
  • 4a Wu YC. Liron M. Zhu JP. J. Am. Chem. Soc.  2008,  130:  7148 
  • 4b Wu YC. Zhu JP. Org. Lett.  2009,  11:  5558 
  • 4c Wu YC. Bernadat G. Masson G. Couturier C. Schlama T. Zhu JP. J. Org. Chem.  2009,  74:  2046 
  • 4d Wu YC. Liu L. Li HJ. Wang D. Chen YJ.
    J. Org. Chem.  2006,  71:  6592 
  • 4e Wu YC. Zou XM. Hu FZ. Yang HZ. J. Heterocycl. Chem.  2005,  42:  609 
  • 4f Wu YC. Zou XM. Hu FZ. Yang HZ. Chin. Chem. Lett.  2005,  16:  1143 
  • 4g Wu YC. Song HB. Liu L. Wang D. Chen YJ. Acta Crystallogr., Sect. E: Struct. Rep. Online  2005,  61:  o1590 
  • 4h Wu YC. Liu L. Wang D. Chen YJ. J. Heterocycl. Chem.  2006,  43:  949 
  • 4i Wu YC. Chen YJ. Li HJ. Zou XM. Hu FZ. Yang HZ. J. Fluorine Chem.  2006,  127:  409 
  • 4j Wu YC. Li HJ. Liu L. Wang D. Yang HZ. Chen YJ. J. Fluoresc.  2008,  18:  357 
  • 4k Wu YC. Li HJ. Yang HZ. Org. Biomol. Chem.  2010,  8:  3394 
  • 4l Liu Z. Liu L. Shafiq Z. Wu YC. Wang D. Chen YJ. Synthesis  2007,  1961 
  • 4m Zhao JL. Liu L. Zhang HB. Wu YC. Wang D. Chen YJ. Synlett  2006,  96 
  • 5a Wu YC. Li HJ. Liu L. Liu Z. Wang D. Chen YJ. Org. Biomol. Chem.  2011,  9:  2868 
  • 5b Wu YC. Li HJ. Liu L. Demoulin N. Liu Z. Wang D. Chen YJ. Adv. Synth. Catal.  2011,  353:  907 
  • 6 Wu YC. Liu L. Liu YL. Wang D. Chen YJ. J. Org. Chem.  2007,  72:  9383 
7

CCDC 800884 contains the supplementary crystallographic data of spiropyran 3i for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

8

Synthetic Procedure for Spiropyrans 3
A solution of (1R,2R)-1,2-diphenylethane-1,2-diamine (1h, 42.5mg, 0.2 mmol) and hemiacetal esters 2a (67.7mg, 0.2 mmol) in CH2Cl2 (2 mL) was stirred at reflux for 3 d. The mixture was concentrated, and the residue was purified
by column chromatography over silica gel to afford 2H-chromene-piperazin-2-one spiropyran 3c (85.1 mg) in 85% yield as a single diastereomer. White solid; mp 136-137 ˚C. [α]D ²4 +101.27 (c 2.0, MeCO2Et). ¹H NMR (300 MHz, CDCl3): δ = 7.43-7.05 (m, 18 H), 5.95 (s, 2 H), 4.67 (s, 2 H), 2.98 (br s, 1 H), 1.18 (s, 9 H). ¹³C NMR (75 MHz, CDCl3): δ = 167.2, 148.1, 144.1, 138.0, 137.9, 137.8, 137.6, 129.0, 128.6, 128.5, 128.4, 128.4, 128.3, 128.2, 128.1, 127.7, 126.6, 123.3, 120.4, 120.2, 117.0, 86.9, 65.8, 58.6, 34.3, 31.4. FT-IR (KBr): 3350, 3033, 2361, 1693, 1489, 1245, 921, 700 cm. Anal. Calcd for C34H32N2O2: C, 81.57; H, 6.44; N, 5.60. Found: C, 81.43; H, 6.67; N, 5.82.