References and Notes
1
Transition
Metals for Organic Synthesis
2nd ed.:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
2004.
For selected representative reviews,
see:
2a
Hesp KD.
Stradiotto M.
ChemCatChem
2010,
2:
1192
2b
Müller TE.
Hultzsch KC.
Yus M.
Foubelo F.
Tada M.
Chem. Rev.
2008,
108:
3795
2c
Brunet JJ.
Chu NC.
Rodriguez-Zubiri M.
Eur. J. Org. Chem.
2007,
4711
2d
Hultzsch KC.
Adv. Synth. Catal.
2005,
347:
367
2e
Alonso F.
Beletskaya IP.
Yus M.
Chem.
Rev.
2004,
104:
3079
2f
Hultzsch KC.
Hampel F.
Wagner T.
Organometallics
2004,
23:
2601
2g
Roesky PW.
Müller TE.
Angew.
Chem. Int. Ed.
2003,
42:
2708
2h
Müller
TE.
Beller M.
Chem.
Rev.
1998,
98:
675
For selected recent examples, see:
3a
Reznichenko AL.
Nguyen HN.
Hultzsch KC.
Angew. Chem. Int. Ed.
2010,
49:
8984
3b
Julian LD.
Hartwig JF.
J.
Am. Chem. Soc.
2010,
132:
13813
3c
Leitch DC.
Turner CS.
Schafer LL.
Angew. Chem. Int. Ed.
2010,
49:
6382
3d
Behr A.
Johnen L.
Rentmeister N.
Adv.
Synth. Catal.
2010,
352:
2062
3e
Shen XQ.
Buchwald SL.
Angew.
Chem. Int. Ed.
2010,
49:
564
3f
Toups KL.
Widenhoefer RA.
Chem.
Commun.
2010,
46:
1712 ;
and references cited therein
For selected recent examples, see:
4a
Shapiro ND.
Rauniyar V.
Hamilton GL.
Wu J.
Toste FD.
Nature (London)
2011,
470:
245
4b
Qureshi ZS.
Deshmukh
KM.
Tambade PJ.
Dhake KP.
Bhalchandra M.
Bhanage BM.
Eur. J. Org. Chem.
2010,
6233
4c
Taylor JG.
Adrio LA.
Hii KK.
Dalton Trans.
2010,
39:
1171
4d
Ackermann L.
Althammer A.
Synlett
2008,
995
4e
Cheng XJ.
Xia YZ.
Wei H.
Xu B.
Zhang C.
Li Y.
Qian G.
Zhang X.
Li K.
Li W.
Eur.
J. Org. Chem.
2008,
1929
4f
Ackermann L.
Kaspar LT.
Althammer A.
Org.
Biomol. Chem.
2007,
5:
1975 ;
and references cited therein
For representative reviews, see:
5a
Masarwa A.
Marek I.
Chem. Eur. J.
2010,
16:
9712
5b
Pellissier H.
Tetrahedron
2010,
66:
8341
5c
Audran G.
Pellissier H.
Adv. Synth. Catal.
2010,
352:
575
5d
de Meijere A.
Kozhushkov
SI.
Schill H.
Chem. Rev.
2006,
106:
4926
5e
Brandi A.
Cicchi S.
Cordero FM.
Goti A.
Chem. Rev.
2003,
103:
1213
5f
Brandi A.
Goti A.
Chem. Rev.
1998,
98:
589
For selected reviews on metal-catalyzed
reactions of MCPs, see:
6a
Rubin M.
Rubina V.
Gevorgyan V.
Chem.
Rev.
2007,
107:
3117
6b
Nakamura I.
Yamamoto Y.
Adv. Synth. Catal.
2002,
344:
111
6c
Binger P.
Schmidt T. In Methods
of Organic Chemistry (Houben-Weyl)
Vol. E17c:
de Meijere A.
Thieme;
Stuttgart:
1997.
p.2217-2294
6d
Lautens M.
Klute W.
Tam W.
Chem.
Rev.
1996,
96:
49
6e
Binger P.
Büch HM.
Top. Curr.
Chem.
1987,
135:
77
7a
Siriwardana AI.
Kamada M.
Nakamura I.
Yamamoto Y.
J.
Org. Chem.
2005,
70:
5932
7b
Nakamura I.
Itagaki H.
Yamamoto Y.
Chem. Heterocycl.
Compd. (Engl. Transl.)
2001,
37:
1532
7c
Nakamura I.
Itagaki H.
Yamamoto Y.
J.
Org. Chem.
1998,
63:
6458
8
Shi M.
Liu LP.
Tang J.
Org.
Lett.
2006,
8:
4043
9a
Smolensky E.
Kapon M.
Eisen MS.
Organometallics
2007,
26:
4510
9b
Smolensky E.
Kapon M.
Eisen MS.
Organometallics
2005,
24:
5495
10
Ryu J.-S.
Li GY.
Marks TJ.
J.
Am. Chem. Soc.
2003,
125:
12584
11a
Scott ME.
Lautens M.
J.
Org. Chem.
2008,
73:
8154
11b
Scott ME.
Bethuel Y.
Lautens M.
J. Am. Chem. Soc.
2007,
129:
1482
11c
Taillier C.
Lautens M.
Org. Lett.
2007,
9:
591
11d
Scott ME.
Schwarz CA.
Lautens M.
Org. Lett.
2006,
8:
5521
11e
Lu L.
Chen G.
Ma S.
Org. Lett.
2006,
8:
835
11f
Scott ME.
Lautens M.
Org. Lett.
2005,
7:
3045
11g
Scott ME.
Han W.
Lautens M.
Org. Lett.
2004,
6:
3309
12a
Huang X.
Fu W.-J.
Synthesis
2006,
1016
12b
Shao
L.-X.
Xu B.
Huang J.-W.
Shi M.
Chem. Eur. J.
2006,
12:
510
12c
Siriwardana AI.
Kathriarachchi KKADS.
Nakamura I.
Yamamoto Y.
Heterocycles
2005,
66:
333
12d
Chen Y.
Shi M.
J. Org. Chem.
2004,
69:
426
12e
Shi M.
Xu B.
Huang J.-W.
Org.
Lett.
2004,
6:
1175
12f
Shi M.
Chen Y.
Xu B.
Tang J.
Green Chem.
2003,
5:
85
12g
Shi M.
Chen Y.
Xu B.
Tang J.
Tetrahedron Lett.
2002,
43:
8019
13
Danishefsky S.
Acc.
Chem. Res.
1979,
12:
66
For rare notable exceptions, see:
14a
Fua W.
Xian Huang X.
Tetrahedron Lett.
2008,
49:
562
14b
Li Q.
Shi M.
Timmons C.
Li G.
Org. Lett.
2006,
8:
625
15
Kozhushkov SI.
Yufit DS.
Ackermann L.
Org.
Lett.
2008,
10:
3409
For selected reports on ruthenium-catalyzed
C-H bond functionalizations from our laboratories, see:
16a
Ackermann L.
Vicente R.
Potukuchi HK.
Pirovano V.
Org. Lett.
2010,
12:
5032
16b
Ackermann L.
Novák P.
Vicente R.
Pirovano V.
Potukuchi HK.
Synthesis
2010,
2245
16c
Ackermann L.
Novák P.
Org. Lett.
2009,
11:
4966
16d
Ackermann L.
Born R.
Vicente R.
ChemSusChem
2009,
546
16e
Ackermann L.
Vicente R.
Althammer A.
Org.
Lett.
2008,
10:
2299
16f
Ackermann L.
Althammer A.
Born R.
Tetrahedron
2008,
64:
6115
16g
Ackermann L.
Althammer A.
Born R.
Synlett
2007,
2833
16h Review: Ackermann L.
Vicente R.
Top. Curr. Chem.
2010,
292:
211
16i Ruthenium-catalyzed hydroamination: Ackermann L.
Althammer A.
Synlett
2006,
3125
17a
¹H
NMR and ¹³C NMR spectra of 2 were identical to those of an independently
prepared sample, following a published procedure. See: Hanack M.
Eggensperger H.
Liebigs
Ann. Chem.
1963,
663:
31
17b Compound 2: ¹H NMR (250 MHz,
CDCl3): δ = 1.61 (s, 1 H), 0.79-0.90
(m, 3 H), 0.43-0.49 (m, 6 H), 0.29-0.40 (m, 6
H). ¹³C NMR (62.9 MHz, CDCl3): δ = 69.7
(C), 18.7 (CH), -0.1 (CH2). [D]1-2: ¹H NMR (250 MHz,
CDCl3): δ = 1.60 (s, 1 H), 0.79-0.91
(m, 2 H), 0.43-0.49 (m, 6 H), 0.28-0.40 (m, 6
H). ¹³C NMR (62.9 MHz, CDCl3): δ = 69.7
(C), 18.7 (CD), 18.3 (t, J = 24.0 Hz,
CH), -0.1 (CH2), -0.2 (CH2).
18 The use of pure HCl as the catalyst
may result in ring-opening reactions even under mild reaction conditions: Donskaya NA.
Shulishov EV.
Shabarov YS.
Zh.
Org. Khim.
1981,
17:
2102
19 However, traces (<5%)
of a ring-opened product were detected in the ¹H
NMR spectrum of crude product 7b.
20
General Procedure
for the Preparation of Benzyl(tricyclopropylmethyl)amine (7a), Phenethyl(tricyclopropylmethyl)amine
(7b) and
n
-Octyl(tricyclopropylmethyl)amine (7c):
A flame-dried Schlenk flask was cooled and charged with 1, (402.6 mg, 442.1 µL, 3.0 mmol),
the corresponding amine (1.0 equiv) and NH4Cl (16.0 mg,
10 mol%) in anhyd 1,4-dioxane (3.0 mL) under Ar. After
stirring the reaction mixture for 48 h at 120 ˚C, Et2O
(50 mL) was added at ambient temperature, and the reaction mixture
was extracted with aq HCl (0.1 N, 2 × 80
mL). The combined aqueous phases were washed with Et2O
(2 × 50 mL) and, after addition of aq NaOH (1 N, 25 mL), extracted with CH2Cl2 (3 × 40
mL). The combined organic phases were dried over K2CO3 and
concentrated under reduced pressure. The residue was dissolved in
MeOH (20 mL), stirred with charcoal (2.0 g) at ambient temperature overnight,
quickly filtered through a thin pad of silica gel and concentrated
in vacuo. Amines 7a-c (1.0 mmol) were dissolved in CH2Cl2 (5.0
mL), and a solution of p-TsOH˙H2O (190.2
mg, 1.0 mmol, 1.0 equiv) in MeOH (2.0 mL) was added in one portion
at ambient temperature. After an additional stirring for 10 min,
the reaction mixture was evaporated, and the corresponding p-toluenesulfonate was purified by slow
evaporation of its solution in CH2Cl2-octane
(7a˙p-TsOH:
92% yield, and 7c˙p-TsOH: 94% yield) or in THF-octane
(7b˙p-TsOH:
95% yield) at +4 ˚C. Compound 7a: colorless oil. ¹H
NMR (250 MHz, CDCl3):
δ = 7.21-7.38
(m, 5 H), 3.98 (s, 2 H), 1.53 (br s, 1 H), 0.69-0.71 (m,
3 H), 0.48-0.53 (m, 6 H), 0.29-0.35 (m, 6 H). ¹³C NMR
(62.9 MHz, CDCl3): δ = 142.3 (C), 128.0
(CH), 127.8 (CH), 126.6 (CH), 52.9 (C), 46.7 (CH2), 15.9
(CH), 0.0 (CH2). Compound 7a×p-TsOH: colorless crystals; mp 137-139 ˚C. ¹H
NMR (250 MHz, CDCl3): δ = 8.34 (br
s, 2 H), 7.65 (d, J = 8.0 Hz,
2 H), 7.52-7.56 (m, 2 H), 7.20-7.26 (m, 3 H),
7.16 (d, J = 8.0 Hz, 2 H), 4.29
(t, J = 5.6 Hz, 2 H), 2.37 (s,
3 H), 0.65-0.75 (m, 9 H), 0.40-0.47 (m, 6 H). ¹³C
NMR (62.9 MHz, CDCl3): δ = 142.4 (C),
139.9 (C), 132.4 (C), 130.2 (CH), 128.6 (CH), 128.5 (CH), 128.4
(CH), 125.9 (CH), 67.0 (C), 46.5 (CH2), 21.3 (Me), 11.5
(CH), 1.8 (CH2). Compound 7b:
colorless oil. ¹H NMR (250 MHz, CDCl3): δ = 7.17-7.29
(m, 5 H), 3.05 (t, J = 7.3 Hz,
2 H), 2.75 (t, J = 7.3 Hz, 2
H), 1.53 (br s, 1 H), 0.51-0.60 (m, 3 H), 0.36-0.42 (m,
6 H), 0.20-0.32 (m, 6 H). ¹³C
NMR (62.9 MHz, CDCl3): δ = 140.6 (C),
128.7 (CH), 128.1 (CH), 125.8 (CH), 52.9 (C), 43.8 (CH2),
37.5 (CH2), 15.6 (CH), 0.0 (CH2). Compound 7b˙p-TsOH:
colorless crystals; mp 149-150 ˚C. ¹H
NMR (250 MHz, CDCl3): δ = 8.48 (br
s, 2 H), 7.80 (d, J = 8.0 Hz, 2
H), 7.12-7.26 (m, 7 H), 3.25-3.41 (m, 4 H), 2.38
(s, 3 H), 0.72-0.75 (m, 9 H), 0.41-0.46 (m, 6
H). ¹³C NMR (62.9 MHz, CDCl3): δ = 142.8
(C), 140.0 (C), 137.8 (C), 129.0 (CH), 128.8 (CH), 128.5 (CH), 126.6
(CH), 125.8 (CH), 65.2 (C), 43.9 (CH2), 32.7 (CH2),
21.3 (Me), 11.0 (CH), 1.4 (CH2). Compound 7c:
colorless oil. ¹H NMR (250 MHz, CDCl3): δ = 2.75
(t, J = 7.0 Hz, 2 H), 1.65 (br
s, 1 H), 1.35-1.51 (m, 2 H), 1.27 (m, 10 H), 0.88 (t, J = 6.5 Hz, 3 H), 0.54-0.63
(m, 3 H), 0.37-0.45 (m, 6 H), 0.23-0.30 (m, 6
H). ¹³C NMR (62.9 MHz, CDCl3): δ = 42.4
(C), 31.8 (CH2), 31.4 (CH2), 29.6 (CH2),
29.3 (CH2), 27.5 (CH2), 26.4 (CH2),
22.6 (CH2), 15.7 (CH), 14.1 (Me), 0.0 (CH2).
Compound 7c˙p-TsOH:
colorless crystals; mp 159-161 ˚C. ¹H
NMR (250 MHz, CDCl3): δ = 8.18 (br
s, 2 H), 7.71 (d, J = 8.3 Hz,
2 H), 7.14 (d, J = 8.3 Hz, 2
H), 3.03 (m, 2 H), 2.35 (s, 3 H), 1.92 (m, 2 H), 1.22 (m, 10 H),
0.88 (t, J = 6.5 Hz, 3 H), 0.73-0.75 (m,
9 H), 0.42-0.50 (m, 6 H). ¹³C
NMR (62.9 MHz, CDCl3): δ = 143.0 (C),
139.6 (C), 128.6 (CH), 125.7 (CH), 64.8 (C), 42.3 (CH2),
31.8 (CH2), 29.4 (CH2), 29.2 (CH2),
27.4 (CH2), 26.4 (CH2), 22.6 (CH2),
21.3 (Me), 14.1 (Me), 11.0 (CH), 1.4 (CH2).
21
Yang Y.
Huang X.
Synlett
2008,
1366
22 CCDC 821336 (7a˙p-TsOH), CCDC 821337 (7b˙p-TsOH) and CCDC 821338 (7c˙p-TsOH) contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge via
www.ccdc.cam.ac.uk/conts/retrieving.html [or
from the Cambridge Crystallographic Data Centre, 12, Union Road,
Cambridge CB21EZ, UK; fax: +44 (1223)336033; or deposit@ccdc.cam.ac.uk].
See also:
23a
Bernlohr W.
Beckhaus HD.
Peters K.
von Schnering HG.
Rüchardt C.
Chem. Ber.
1984,
117:
1013
23b
Auzeil N.
Tomas A.
Fleury MB.
Largeron M.
Tetrahedron Lett.
2000,
41:
8781
24a
Herrero R.
Quintanilla E.
Müller P.
Abboud J.-LM.
Chem. Phys. Lett.
2006,
420:
493
24b
Abboud J.-LM.
Alkorta I.
Davalos JZ.
Müller P.
Quintanilla E.
Rossier J.-C.
J.
Org. Chem.
2003,
68:
3786
24c
Olah GA.
Reddy VP.
Rasul G.
Prakash GKS.
J.
Am. Chem. Soc.
1999,
121:
9994
24d
Arnett EM.
Hofelich TC.
J.
Am. Chem. Soc.
1983,
105:
2889
24e
Olah GA.
Westerman PW.
Nishimura J.
J. Am. Chem. Soc.
1974,
96:
3548
24f
Olah GA.
Angew. Chem., Int. Ed. Engl.
1973,
12:
173
24g
Carey FA.
Tremper HS.
J.
Am. Chem. Soc.
1969,
91:
2967
24h
Pittman CU.
Olah GA.
J.
Am. Chem. Soc.
1965,
87:
5123
24i
Deno NC.
Richey HG.
Liu JS.
Hodge JD.
Houser JJ.
Max J.
Wisotsky MJ.
J. Am.
Chem. Soc.
1962,
84:
2016
24j
Hart H.
Law PA.
J. Am. Chem.
Soc.
1962,
84:
2462
25a Ahrens H, Dietrich H, Auler T, Hills M, Kehne H, Feucht D, Herrmann S, Kather K, and Lehr S. inventors; Ger.
Offen., DE 102006059941 A1.
; Chem. Abstr. 2008, 149, 79650
25b Ahrens H, Dietrich H, Auler T, Hills M, Kehne H, Feucht D, Herrmann S, Kather K, and Lehr S. inventors; PCT Int.
Appl., WO 2008074403 A2.
; Chem. Abstr. 2008, 149, 79649
26a
Bénard S.
Neuville L.
Zhu J.
Chem. Commun.
2010,
46:
3393
26b
Bénard S.
Neuville L.
Zhu J.
J.
Org. Chem.
2008,
73:
6441 ;
and references cited therein