Synlett 2011(12): 1748-1752  
DOI: 10.1055/s-0030-1260811
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of a Variety of 2-Alkyl-2-Azabicyclo[3.1.1]heptane-1-carbonitriles via a Dynamic Addition-Intramolecular Substitution Sequence

Ann De Blieck, Christian V. Stevens*
Department of Sustainable Organic Chemistry and Technology, Faculty of BioScience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
Fax: +32(9)2646243; e-Mail: chris.stevens@ugent.be;
Further Information

Publication History

Received 11 February 2011
Publication Date:
29 June 2011 (online)

Abstract

An improved two-step synthetic approach towards 3-(2-chloroethyl)cyclobutanone is described and used in the synthesis of a class of 2-alkyl-2-azabicyclo[3.1.1]heptane-1-carbonitriles. The key step consists of a reversible addition of hydrogen cyanide onto the in situ generated imines, followed by an intramolecular nucleophilic substitution, thereby leading to the bicyclic skeleton in moderate to good yields (47-92%). These bicyclic compounds are stable, and the incorporated cyano group can be easily reduced to the corresponding aminomethyl group in high yields (93-99%), ­using lithium aluminum hydride.

    References and Notes

  • 1a Patrick GL. In An Introduction to Medicinal Chemistry   3rd ed.:  Oxford University Press; New York: 2005.  p.210 
  • 1b Hanessian S. Auzzas L. Acc. Chem. Res.  2008,  41:  1241 
  • 2 Bell EA. Qureshi MY. Pryce RY. Janzen DH. Lemke P. Clardy J. J. Am. Chem. Soc.  1980,  102:  1409 
  • 3a Montelione GT. Hughes P. Clardy J. Scheraga HA. J. Am. Chem. Soc.  1986,  108:  6765 
  • 3b Talluri S. Montelione GT. van Duyne G. Piela L. Clardy J. Scheraga HA. J. Am. Chem. Soc.  1987,  109:  4473 
  • 3c Mapelli C. Van Halbeek H. Stammer CH. Biopolymers  1990,  29:  407 
  • General info:
  • 4a Pirrung MC. Tetrahedron Lett.  1980,  21:  4577 
  • 4b Hughes P. Martin M. Clardy J. Tetrahedron Lett.  1980,  21:  4579 
  • 4c Hughes P. Clardy J. J. Org. Chem.  1988,  53:  4793 
  • 4d Gaoni Y. Org. Prep. Proced. Int.  1995,  27:  185 
  • Via [2+2]cyclisation:
  • 4e Tamura Y. Ishibashi H. Hirai M. Kita Y. Ikeda M. J. Org. Chem.  1975,  40:  2702 
  • 4f Schell FM. Cook PM. Hawkinson SW. Cassady RE. Thiessen WE. J. Org. Chem.  1979,  44:  1380 
  • 4g Esslinger CS. Koch HP. Kavanaugh MP. Philips DP. Chamberlin AR. Thompson CM. Bridges RJ. Bioorg. Med. Chem. Lett.  1998,  8:  3101 
  • 4h Piotrowsky DW. Synlett  1999,  1091 
  • 4i Kwak Y.-S. Winkler JD. J. Am. Chem. Soc.  2001,  123:  7429 
  • 4j Vogler B. Bayer R. Meller M. Kraus W. Schell FM. J. Org. Chem.  1989,  54:  4165 
  • 4k Toda F. Miyamoto H. Takeda K. Matsugawa R. Maruyama N. J. Org. Chem.  1993,  58:  6208 
  • 4l Tkachenko AN. Radchenko DS. Mykhailiuk PK. Grygorenko OO. Komarov IV. Org. Lett.  2009,  11:  5674 
  • Via an appropriate bromohydrine:
  • 4m Krow GR. Lee YB. Lester WS. Christian H. Shaw DA. Yaun J. J. Org. Chem.  1998,  63:  8558 
  • 4n Krow GR. Lee YB. Lester WS. Liu N. Yaun J. Duo J. Herzon SB. Nguyen Y. Zacharias D. J. Org. Chem.  2001,  66:  1805 
  • 4o Krow GR. Lester WS. Liu N. Yuan J. Hiller A. Duo J. Herzon SB. Nguyen Y. Cannon K. J. Org. Chem.  2001,  66:  1811 
  • Via an intramolecular nucleophilic substitution:
  • 4p Lescop C. Mevellec L. Huet F. J. Org. Chem.  2001,  66:  4187 
  • 5 Stevens CV. De Kimpe N. J. Org. Chem.  1996,  61:  2174 
  • 6a Rammeloo T. Stevens CV. De Kimpe N. J. Org. Chem.  2002,  67:  6509 
  • 6b Rammeloo T. Stevens CV. Chem. Commun.  2002,  250 
  • 6c Stevens CV. Smagghe G. Rammeloo T. De Kimpe N. J. Agric. Food Chem.  2005,  53:  1945 
  • 7a Radchenko DS. Kopylova N. Grygorenko OO. Komarov IV. J. Org. Chem.  2009,  74:  5541 
  • 7b Jo H. Fitzgerald ME. Winkler JD. Org. Lett.  2009,  11:  1685 
  • 8 Roberts JD. Mazur RH. J. Am. Chem. Soc.  1951,  73:  2509 
  • 11a Ripin DHB. Vetelino M. Synlett  2003,  2353 
  • 11b Liotta DC, Mao S, and Hager M. inventors; WO  2006063281.  Chem. Abstr. 2006, 145, 63117
  • 11c Kabalka GW. Yao M.-L. Navarane A. Tetrahedron Lett.  2005,  46:  4915 
  • Typical Procedure for the Synthesis of 2-Alkyl-2-Azabicylo[3.1.1]heptane-1-carbonitriles 4
  • 12a

    In a dry, pressure resistant vessel (20 mL volume) 3-(2-chloroethyl)cyclobutanone (3, 2.00 g, 15 mmol, 1 equiv), a primary amine (15 mmol, 1 equiv), acetone cyanohydrin (2.57 g, 30 mmol, 2 equiv), and Et3N (3.05 g, 30 mmol, 2 equiv) were dissolved in dry MeOH (16 mL). The vessel was closed and heated to 110 ˚C for 2-3 d. When using ethyl-(pure) or methylamine (2 M in MeOH), the vessel was heated for 4 d, using 30 mmol of the volatile amine. Isolation of the desired end product could be performed by two means. The first method made use of column chromatography. After washing of the reaction mixture with a sat. NaHCO3 solution, 3 g of silica were added to the organic phase (CH2Cl2), followed by removal of the solvent under vacuum. The end product was then recovered using column chroma-tography. The second purification strategy was more convenient and consisted of an acid-base extraction. After removal of the solvent under reduced pressure, 10 mL of a 2 N HCl solution was added. The solution was extracted with Et2O (3 × 20 mL) to remove the excess of acetone cyano-hydrin. A concentrated K2CO3 solution was added to the H2O layer until basic, followed by an extraction of the H2O layer with CH2Cl2 (3 × 30 mL). The combined organic layers (CH2Cl2) were dried with MgSO4. After filtration of the solids and removal of the volatiles, the pure 2-R0-2-azabicyclo[3.1.1]heptane-1-carbonitrile (4) was obtained in moderate to good yields, depending on the R0 group.

  • 12b

    In a flame-dried flask of 50 mL, 3-(2-chloroethyl)-cyclobutanone (3, 1.00 g, 7.5 mmol) was dissolved in MeCN, together with 14 (8.3 mmol, 1.1 equiv). Hereafter, the reaction mixture was brought to reflux temperature and stirred for 3 d. The pure end product was isolated according to the same procedures as mentioned above in 12a.
    2-(4-Methoxybenzyl)-2-azabicyclo[3.1.1]heptane-1-carbonitrile (4b)
    Yellow crystals (3.09 g, 85%). Anal. Calcd (%) for C15H18N2O: C, 74.4; H, 7.5; N, 11.6. Found: C, 74.3; H, 7.6; N, 11.3. R f = 0.35 (PE-EtOAc = 7:3). IR (ATR): 2359 (CN), 1612, 1515, 1495, 1454 (Ar) cm. ¹H NMR (300 MHz, CDCl3): δ = 1.91 (2 H, td, J = 6.6, 3.3 Hz, CH2), 2.24 (2 H, dd, J = 7.2, 2.2 Hz, 2 × CqCHaHb), 2.41 (2 H, td, J = 7.2, 2.2 Hz, 2 × CqCHaHb), 2.49 (1 H, ca. sept, J = 3.3 Hz, CH), 2.85 (2 H, t, J = 6.6 Hz, NCH2), 3.79 [5 H, s, NCH2Ar, OCH3 (Ar)], 6.86 [2 H, d, J = 8.8 Hz, 2 × CH (Ar)], 7.29 [2 H, d, J = 8.8 Hz, 2 × CH (Ar)]. ¹³C NMR (75 MHz, CDCl3): δ = 27.68 (CH2), 31.25 (CH), 37.21 (2 × CqCHaHb), 42.49 (NCH2), 55.27 [OCH3 (Ar)], 56.60 (NCH2Ar), 58.39 (Cq), 113.72 [2 × CH (Ar)], 120.36 (CN), 130.01 [2 × CH (Ar)], 130.79 [Cq (Ar)], 158.83 [Cq (Ar)]. ESI-MS: m/z (%) = 291 (20), 214 (15), 213 (100) [MH+].

  • 13 Grygorenko OO. Artamonov OS. Palamarchuk GV. Zubatyuk RI. Shishkin OV. Komarov IV. Tetrahedron: Asymmetry  2006,  17:  252 
9

3-(2-Chloroethyl)-2,2-dichlorocyclobutanone (9b) In an oven-dried two-necked flask of 500 mL, a solution of homoallyl chloride (15 g, 166 mmol) and a zinc-copper couple (43.32 g, 663 mmol) in dry Et2O (250 mL) was cooled to 0 ˚C under a nitrogen atmosphere. A solution of trichloroacetyl chloride (60.24 g, 331 mmol) and 1,2-dimethoxyethane (29.86 g, 331 mmol) in dry Et2O (150 mL) was added dropwise, after which the reaction mixture was stirred overnight at r.t. The solution was filtered over Celite® and washed with Et2O. This filtrate was extracted with H2O (2 × 100 mL), NaHCO3 (4 × 100 mL), brine (2 × 100 mL). The organic layer was dried over MgSO4 and the solvent removed under reduced pressure, leading to the desired 3-(2-chloroethyl)-2,2-dichlorocyclobutanone (26.24 g, 78%) as a clear orange oil. IR (NaCl): 1811 (C=O) cm. ¹H NMR (300 MHz, CDCl3): δ = 2.05-2.17 (1 H, m, CHCH2), 2.38-2.50 (1 H, m, CHCH2), 3.10 (1 H, dd, J = 16.2, 9.4 Hz, CH2CO), 3.11-3.24 (1 H, m, CH), 3.44 (1 H, dd, J = 16.2, 9.4 Hz, CH2CO), 3.66-3.72 (2 H, m, CH2Cl). ¹³C NMR (75 MHz, CDCl3): δ = 33.94 (CHCH2), 42.12 (CH2Cl), 43.50 (CH), 47.64 (CH2CO), 88.51 (Cq), 191.87 (C=O). ESI-MS: m/z (%) = 205 (35), 203 (85), 201 (100).

10

3-(2-Chloroethyl)cyclobutanone (3)
A solution of 3-(2-chloroethyl)-2,2-dichlorocyclobutanone (9b, 28.23 g, 140 mmol) in AcOH (100 mL) was vigorously stirred, while slowly adding 2 equiv of zinc (18.32 g, 280 mmol). Two extra equiv of zinc (18.32 g, 280 mmol) were added to the reaction mixture, after which it was refluxed overnight. After cooling, the mixture was filtered over Celite® and washed with CH2Cl2. The filtrate was neutra-lized with a sat. NaHCO3 solution. The organic phase was dried with MgSO4, filtered, and the solvent was removed in vacuo. 3-(2-Chloroethyl)cyclobutanone (3) was obtained as a bright yellow oil in 86% yield (15.90 g).
IR (NaCl): 1778 (C=O) cm. ¹H NMR (300 MHz, CDCl3): δ = 2.08 (2 H, dd, J = 13.8, 6.6 Hz, CHCH2), 2.54-2.69 (1 H, m, CH), 2.72-2.82 (2 H, m, 2 × CH2CO), 3.15-3.27 (2 H, m, 2 × CH2CO), 3.59 (2 H, t, J = 6.6 Hz, CH2Cl). ¹³C NMR (75 MHz, CDCl3): δ = 21.71 (CH), 38.57 (CHCH2), 43.41 (CH2Cl), 52.34 (2 × CH2CO), 207.01 (C=O). ESI-MS: m/z (%) = 135 (45), 133 (100).

14

General Procedure for the Synthesis of 2-Methyl-2-Alkyl/Aryl Aminopropionitriles (14)
A primary amine (30 mmol) was mixed with acetone cyanohydrin 13 (2.55 g, 30 mmol) in dry MeOH (25 mL). The solution was stirred at r.t. for 24 h, while N2 gas was bubbled through. The solvent was removed in vacuo, and the propionitriles 14 were obtained in moderate to excellent yields (64-99%). Analytical samples were obtained after filtration over silica or recrystallization in MeOH.
2-(4-Methoxybenzylamino)-2-methylpropionitrile (14b) Yellow crystals (6.07 g, 99%). Anal. Calcd (%) C12H16N2O: C, 70.6; H, 7.9; N, 13.7. Found: C, 70.3; H, 8.0; N, 13.5. IR (ATR): 3275 (NH), 2359 (CN), 1611, 1515 (Ar) cm. ¹H NMR (300 MHz, CDCl3): δ = 1.51 (7 H, s, 2 × CH3, NH), 3.80 [3 H, s, OCH3 (Ar)], 3.83 (2 H, s, NCH2), 6.87 [2 H, d, J = 8.3 Hz, 2 × CH (Ar)], 7.28 [2 H, d, J = 8.3 Hz, 2 × CH (Ar)]. ¹³C NMR (75 MHz, CDCl3): δ = 27.44 (2 × CH3), 49.00 (NCH2), 51.68 (Cq), 55.29 [OCH3 (Ar)], 113.98 [2 × CH (Ar)], 122.85 (CN), 129.60 [2 × CH (Ar)], 131.11 [Cq (Ar)], 158.97 [Cq (Ar)]. ESI-MS: m/z (%) = 178 (100)
[M - CN]+).

15

General Protocol for the Synthesis of (2-Alkyl-2-azabicyclo[3.1.1]hept-1-yl)methylamine 15 A solution of LiAlH4 (0.19 g, 5 mmol,2 equiv) in dry THF (15 mL) was stirred at -78 ˚C under a nitrogen atmosphere. A flame-dried syringe was used to slowly add a solution of 2-alkyl-2-azabicyclo[3.1.1]heptane-1-carbonitrile 4 in dry THF (2.5 mmol). Upon completion of the addition, the reaction was stirred overnight at r.t., followed by a careful addition of H2O to neutralize the excess of LiAlH4. The solution was dried with MgSO4, followed by filtration of the solids and evaporation of the solvent to give the pure {2-alkyl-2-azabicyclo[3.1.1]hept-1-yl}methylamine (15, 93-99%). When necessary, the compounds could be further purified using filtration over a short silica column (CH2Cl2-MeOH = 9:1).
C -{2-(4-Methoxybenzyl)-2-azabicyclo[3.1.1]hept-1-yl}methylamine (15b)
Bright yellow oil (0.60 g, 97%). IR (ATR): 3365 (NH2), 1684 (Ar) cm. ¹H NMR (300 MHz, CDCl3): δ = 1.37 (2 H, br s, NH2), 1.65 (2 H, td, J = 6.6, J = 2.8 Hz, 2 × CqCHaHb), 1.90 (2 H, td, J = 6.6, J = 3.3 Hz, CH2), 1.96 (2 H, dd, J = 6.6, J = 2.8 Hz, 2 × CqCHaHb), 2.43 (1 H, sept, J = 3.3 Hz, CH), 2.66 (2 H, s, CqCH2NH2), 2.92 (2 H, t, J = 6.6 Hz, NCH2), 3.53 (2 H, s, NCH2Ar), 3.80 [3 H, s, OCH3 (Ar)], 6.86 [2 H, d, J = 8.8 Hz, 2 × CH (Ar)], 7.26 [2 H, d, J = 8.8 Hz, 2 × CH (Ar)]. ¹³C NMR (75 MHz, CDCl3): δ = 28.42 (CH2), 30.13 (CH), 33.84 (2 × CqCHaHb), 43.77 (NCH2), 48.33 (CqCH2NH2), 52.64 (NCH2Ar), 55.42 [OCH3 (Ar)], 68.29 (Cq), 113.82 [2 × CH (Ar)], 129.54 [2 × CH (Ar)], 133.53 [Cq (Ar)], 158.51 [Cq (Ar)]. ESI-MS: m/z (%) = 247 (100) [MH+]. ESI-HRMS: m/z calcd C15H23ON2: 247.18049 [MH+]; found: 247.17857.

16

Typical Procedure for the Synthesis of 2-Aryl-2-azabicyclo[3.1.1]heptane-1-carboxylic Acid Hydrochlorides 16
An amount of the 2-aryl-2-azabicyclo[3.1.1]heptane-1-carbonitrile 4 (0.5 mmol) was dissolved in 6 N HCl (4 mL). The reaction mixture was refluxed overnight. After cooling to r.t., the mixture was kept in the freezer to crystallize the acid from the aqueous solution.
2-(4-Methoxybenzyl)-2-azabicyclo[3.1.1]heptane-1-carboxylic Acid Hydrochloride (16b) White needles (133.7 mg, 90%). Anal. Calcd (%) for C15H19NO3: C, 68.9; H, 7.3; N, 5.4. Found: C, 68.9; H, 7.4; N, 5.35. IR (ATR): 3358 (br, OH), 1739 (CO), 1637, 1548 (Ar) cm. ¹H NMR (300 MHz, D2O, MeCN): δ = 2.20 (2 H, td, J = 6.6, J = 3.3 Hz, CH2), 2.47 (2 H, dd, J = 9.4, J = 2.8 Hz, 2 × CqCHaHb), 2.75 (1 H, sept, J = 3.3 Hz, CH), 2.94 (2 H, dd, J = 11.8, J = 6.6 Hz, 2 × CqCHaHb), 3.51 (2 H, t, J = 6.6 Hz, NCH2), 3.86 [3 H, s, OCH3 (Ar)], 4.60 (2 H, s, NCH2Ar), 7.08 [2 H, d, J = 8.8 Hz, 2 × CH (Ar)], 7.52 [2 H, d, J = 8.8 Hz, 2 × CH (Ar)]. ¹³C NMR (75 MHz, D2O, MeCN): δ = 24.72 (CH2), 30.30 (CH), 35.84 (2 × CqCHaHb), 46.50 (NCH2), 50.07 [OCH3 (Ar)], 58.27 (NCH2Ar), 59.63 (Cq), 115.39 [2 × CH (Ar)], 121.02 [Cq (Ar)], 133.43 [2 × CH (Ar)], 161.17 [Cq (Ar), COOH]. ESI-MS: m/z (%) = 263 (20), 262 (100) [MH+].

17

Synthesis of 2,4-Methanepipecolic Acid (17)
A suspension of 2-benzyl-2-azabicyclo[3.1.1]heptane-1-carboxylic acid hydrochloride (16a, 251 mg, 0.94 mmol) and Pd/C (10 wt%, 125 mg) in dry MeOH (2 mL) was placed in a Parr apparatus which was degassed and filled with H2. The mixture was stirred overnight applying a constant pressure of 5 bar of H2. Filtration of the heterogeneous suspension over Celite®, followed by evaporation of the solvent in vacuo delivered the crude 2,4-methanepipecolic acid (17), which was purified by recrystallization from MeOH; colorless crystals (124.7 mg, 94%). Anal. Calcd (%) for C7H11NO2: C, 59.6; H, 7.85; N, 9.9. Found: C, 59.6; H, 7.9; N, 9.8. IR (ATR): 3358 (br, OH), 3187 (NH), 1742 (CO) cm. ¹H NMR (300 MHz, D2O, MeCN): δ = 1.87 (2 H, dd, J = 8.3, J = 2.8 Hz, 2 × CqCHaHb), 2.09-2.23 (4 H, m, 2 × CqCHaHb, CH2), 2.60 (1 H, sept, J = 3.3 Hz, CH), 2.81 (2 H, br s, OH, NH), 3.53 (2 H, t, J = 7.2 Hz, NCH2). ¹³C NMR (75 MHz, D2O, MeCN): δ = 25.75 (CH2), 29.01 (CH), 33.38 (2 × CqCHaHb), 37.66 (NCH2), 65.21 (Cq), 171.65 (COOH). ESI-MS: m/z (%) = 143 (20), 142 (100) [MH+].