Abstract
Research in supramolecular chemistry has been carried out in
my laboratory for the past 12 years. Intrigued by the fascinating
power of supramolecular chemistry, as seen in biomolecular recognition
events in nature, we started out by trying to mimic the basic principles
of such recognition events in small artificial model systems. Our
first targets were amino acids and oligopeptides. We then moved
on to proteins and nucleic acids, and we started to develop supramolecular
systems that, besides simple binding, also featured functions, e.g.
shutting down enzymes or allowing gene delivery into cells. In recent
years and in a completely different yet related field, we have begun
to develop self-assembling nanomaterials. The basic idea for this
derived from an accidental discovery of the interesting self-assembling
properties of a simple zwitterion, which was a synthetic intermediate
on the route to our amino acid receptors. This personal account
summarizes this journey and is intended not only to present the
most-important findings from our laboratory so far, but also to
shed light on how all these projects developed over the years and
how our journey took us to where we are now.
1 Introduction
2 How It All Began
3 The Beginning: The Design of a New Oxoanion Binding Site
4 Tailor-Made Receptors for Small Peptides
5 Combinatorial Development of Peptide Receptors
6 From Small Peptides to Proteins
7 Nucleic Acids as Targets
8 Self-Assembling Zwitterions
9 pH-Switchable Nanostructures
10 Conclusion
Key words
supramolecular chemistry - molecular recognition - self-assembly - host-guest chemistry - combinatorial
chemistry
References
1
Roth WR.
Staemler V.
Neumann N.
Schmuck C.
Liebigs Ann.
1995,
1061
2
Breslow R.
Artificial Enzymes
Wiley-VCH;
Weinheim:
2005.
3a
Breslow R.
J. Phys. Org. Chem.
2006,
19:
813
3b
Chandler D.
Nature
(London)
2005,
437:
640
4
Breslow R.
Schmuck C.
J. Am. Chem. Soc.
1996,
118:
6601
5a
Süssmuth RD.
Med. Chem.
Bioact. Nat. Prod.
2006,
35
5b
Nicolaou KC.
Boddy CNC.
Bräse S.
Winssinger N.
Angew.
Chem. Int. Ed.
1999,
38:
2096
5c
Williams DH.
Bardsley B.
Angew.
Chem. Int. Ed.
1999,
38:
1172
6
Walsh CT.
Fisher SL.
Park I.-S.
Prahalad M.
Wu Z.
Chem.
Biol.
1996,
3:
21
7a
Schneider HJ.
Angew. Chem. Int.
Ed. Engl.
1993,
32:
848
7b
Webb TH.
Wilcox CS.
Chem.
Soc. Rev.
1993,
22:
383
See also a special issue on molecular recognition:
7c
Chem. Rev.
1997,
97:
1231
8a
Prins L.-J.
Reinhoudt DN.
Timmerman P.
Angew. Chem. Int. Ed.
2001,
40:
2382
8b
Williams DH.
Westwell MS.
Chem.
Soc. Rev.
1998,
27:
57
9a
Rehm T.
Schmuck C.
Chem.
Commun. (Cambridge)
2008,
801
9b
Oshovsky GV.
Reinhoudt DN.
Verboom W.
Angew. Chem. Int. Ed.
2007,
46:
2366
9c
Kubik S.
Reyheller C.
Stuewe S.
J.
Incl. Phenom. Macrocycl. Chem.
2005,
52:
137
10a
Nicolaou KC.
Mitchell HJ.
Jain NF.
Winssinger N.
Hughes R.
Bando T.
Angew.
Chem. Int. Ed.
1999,
38:
240
10b
Evans DA.
Wood MR.
Trotter BW.
Richardson TI.
Barrow JC.
Katz JL.
Angew.
Chem. Int. Ed.
1998,
37:
2700
10c
Evans DA.
Dinsmore CJ.
Watson PS.
Wood MR.
Richardson TI.
Trotter BW.
Katz JL.
Angew.
Chem. Int. Ed.
1998,
37:
2704
10d
Boger DL.
Miyazaki S.
Heon KimS.
Wu JH.
Castle SL.
Loiseleur O.
Jin Q.
J. Am. Chem.
Soc.
1999,
121:
10004
11
McComas CC.
Crowley BM.
Boger DL.
J. Am. Chem. Soc.
2003,
125:
9314
12
Schmuck C.
Coord.
Chem. Rev.
2006,
250:
3053
13a
Schmuck C.
Bickert V.
Merschky M.
Geiger L.
Rupprecht D.
Dudaczek J.
Wich P.
Rehm T.
Machon U.
Eur. J. Org. Chem.
2008,
324
13b
Schmuck C.
Rupprecht D.
Synthesis
2007,
3095
For some examples, see:
14a
Schmuck C.
Geiger L.
Chem. Commun. (Cambridge)
2005,
772
14b
Schmuck C.
Graupner S.
Tetrahedron Lett.
2005,
46:
1295
14c
Schmuck C.
Machon U.
Chem. Eur. J.
2005,
11:
1109
14d
Schmuck C.
Dudaczek J.
Tetrahedron Lett.
2005,
46:
7101
15
Schmuck C.
Chem.
Commun. (Cambridge)
1999,
843
16
Schmuck C.
Eur.
J. Org. Chem.
1999,
2397
17
Schmuck C.
Chem.
Eur. J.
2000,
6:
709
18
Moiani D.
Cavallotti C.
Famulari A.
Schmuck C.
Chem. Eur. J.
2008,
14:
5207
19
Schmuck C.
Rupprecht D.
Wienand W.
Chem.
Eur. J.
2006,
12:
9186
20
Schmuck C.
Wienand W.
Synthesis
2002,
655
21
Schmuck C.
Geiger L.
J. Am. Chem. Soc.
2004,
126:
8898
22
Murakami Y.
Tani M.
Ariyasu T.
Nshiyama C.
Watanabe T.
Yokoyama Y.
Heterocycles
1988,
27:
1855
23
Hynes RO.
Cell
2002,
110:
673
24
Schmuck C.
Rupprecht D.
Junkers M.
Schrader T.
Chem. Eur. J.
2007,
13:
6864
25a
Thompson LA.
Ellman JA.
Chem. Rev.
1996,
96:
555
25b
Balkenhohl F.
von dem Busche-Hünnefeld C.
Lansky A.
Zechel C.
Angew.
Chem. Int. Ed. Engl.
1996,
35:
2288
25c
Lowe G.
Chem.
Soc. Rev.
1995,
24:
309
26a
Schreiber SL.
Burke MD.
Angew. Chem. Int. Ed.
2004,
43:
46
26b
Breinbauer R.
Vetter IR.
Waldmann H.
Angew.
Chem. Int. Ed.
2002,
41:
2878
27
Schmuck C.
Wich P.
Top. Curr. Chem.
2007,
277:
3
28
Schmuck C.
Wich P.
New J. Chem.
2006,
30:
1377
29a
Schmuck C.
Heil M.
Org.
Biomol. Chem.
2003,
1:
633
29b
Schmuck C.
Heil M.
ChemBioChem.
2003,
4:
1232
30
Schmuck C.
Frey P.
Heil M.
ChemBioChem
2005,
6:
628
31
Schmuck C.
Heil M.
Chem. Eur. J.
2006,
12:
1339
32
Schmuck C.
Heil M.
Scheiber J.
Baumann K.
Angew. Chem. Int. Ed.
2005,
44:
7208
33
Schmuck C.
Wich P.
Angew. Chem. Int. Ed.
2006,
45:
4277
34 The term ‘Gulliver effect’ is
often used in supramolecular chemistry to describe the simultaneous
effect of several weak interactions for binding a substrate: See
also ref. 8a
35
Mammen M.
Choi S.-K.
Whitesides GM.
Angew.
Chem. Int. Ed.
1998,
37:
2754
36a
Pereira PJB.
Bergner A.
Macedo-Ribeiro S.
Huber R.
Matschiner G.
Fritz H.
Sommerhoff CP.
Bode W.
Nature (London)
1998,
392:
306
36b
Sommerhoff CP.
Bode W.
Pereira PJB.
Stubbs MT.
Stürzebecher J.
Piechottka GP.
Matschiner G.
Bergner A.
Proc. Natl. Acad. Sci. U.S.A.
1999,
96:
10984
For some examples, see:
37a
Schaschke N.
Dominik A.
Matschiner G.
Sommerhoff CP.
Bioorg. Med. Chem. Lett.
2002,
12:
985
37b
Selwood T.
Elrod KC.
Schechter NM.
Biol. Chem.
2003,
384:
1605
37c
Thongyoo P.
Bonomelli C.
Leatherbarrow RJ.
Tate EW.
J.
Med. Chem.
2009,
52:
6197
37d
Sommerhoff CP.
Avrutina O.
Schmoldt H.-U.
Gabrijelcic-Geiger D.
Diederichsen U.
Kolmar H.
J.
Mol. Biol.
2010,
395:
167
38
Ohsaki M.
Okuda T.
Wada A.
Hirayama T.
Niidome T.
Aoyagi H.
Bioconjugate Chem.
2002,
13:
510
39a
Crowley JI.
Rapoport H.
J.
Am. Chem. Soc.
1970,
92:
6363
39b
Crowley JI.
Rapoport H.
Acc. Chem.
Res.
1976,
9:
135
40
Machon U.
Büchold C.
Stempka M.
Schirmeister T.
Gelhaus C.
Leippe M.
Gut J.
Rosenthal PJ.
Kisker C.
Leyh M.
Schmuck C.
J. Med.
Chem.
2009,
52:
5662
41a
Meldal M.
Tetrahedron Lett.
1992,
33:
3077
41b
Renil M.
Ferreras M.
Delaisse JM.
Foged NT.
Meldal M.
J.
Pept. Sci.
1998,
4:
195
42a
Peczuh MW.
Hamilton AD.
Chem. Rev.
2000,
100:
2479
42b
Zhou H.
Baldini L.
Hong J.
Wilson AJ.
Hamilton AD.
J.
Am. Chem. Soc.
2006,
128:
2421
42c
Yin H.
Hamilton AD.
Angew. Chem. Int.
Ed.
2005,
44:
4130
43
Wich PR.
Schmuck C.
Angew. Chem. Int. Ed.
2010,
49:
4113
44a
Hernandez-Folgado L.
Schmuck C.
Tomić S.
Piantanida I.
Bioorg.
Med. Chem. Lett.
2008,
18:
2977
44b
Hernandez-Folgado L.
Baretić D.
Piantanida I.
Marjanović M.
Kralj M.
Rehm T.
Schmuck C.
Chem. Eur.
J.
2010,
16:
3036
45a
Dervan PB.
Bioorg. Med. Chem.
2001,
9:
2215
45b
Dervan PB.
Edelson BS.
Curr.
Opin. Struct. Biol.
2003,
13:
284
46
Gröger K.
Baretić D.
Piantanida I.
Marjanović M.
Kralj M.
Grabar M.
Tomić S.
Schmuck C.
Org. Biomol. Chem.
2011,
9:
198
47
Kuchelmeister HY.
Schmuck C.
Eur. J.
Org. Chem.
2009,
4480
48
Kuchelmeister HY.
Schmuck C.
Chem. Eur.
J.
2011,
17:
5311
For some selected examples, see:
49a
Bazzicalupi C.
Bencini A.
Biagini S.
Faggi E.
Meini S.
Giorgi C.
Spepi A.
Valtancoli B.
J. Org. Chem.
2009,
74:
7349
49b
Delépine A.-S.
Tripier R.
Handel H.
Org. Biomol. Chem.
2007,
6:
1743
49c
Baudoin O.
Gonnet F.
Teulade-Fichou M.-P.
Vigneron J.-P.
Tabet J.-C.
Lehn J.-M.
Chem. Eur. J.
1999,
5:
2762
49d
Niikura K.
Metzger A.
Anslyn EV.
J.
Am. Chem. Soc.
1998,
120:
8533
49e
Sebo L.
Diederich F.
Helv. Chim. Acta
2000,
83:
93
50
Schmuck C.
Wienand W.
J. Am. Chem. Soc.
2003,
125:
452
51
Schlund S.
Schmuck C.
Engels B.
J.
Am. Chem. Soc.
2005,
127:
11115
52 For one of the first examples, see: Carter PJ.
Winter G.
Wilkinson AJ.
Fersht AR.
Cell
1984,
38:
835
53
Cockroft SL.
Hunter CA.
Chem. Soc. Rev.
2007,
36:
172
54
Rether C.
Sicking W.
Boese R.
Schmuck C.
Beilstein J. Org. Chem.
2010,
6:
No. 3
55
Schmuck C.
Bickert V.
Org. Lett.
2003,
5:
4579
56
Kolb HC.
Finn MG.
Sharpless BK.
Angew. Chem. Int. Ed.
2001,
40:
2004
57
Schmuck C.
Rehm T.
Gröhn F.
Klein K.
Reinhold F.
J.
Am. Chem. Soc.
2006,
128:
1430
58
Schmuck C.
Rehm T.
Klein K.
Gröhn F.
Angew. Chem. Int. Ed.
2007,
46:
1693
59
Fuhrhop J.-H.
Wang T.
Chem. Rev.
2004,
104:
2901
For some selected examples, see:
60a
Reches M.
Gazit E.
Science (Washington, DC, U.S.)
2003,
300:
625
60b
Kol N.
Adler-Abramovich L.
Berlam D.
Shneck R.
Gazit E.
Rousso I.
Nano Lett.
2005,
5:
1343
60c
Gosh S.
Reches M.
Gazit E.
Verma S.
Angew. Chem. Int. Ed.
2007,
46:
2002
60d
Yan X.
He Q.
Wang K.
Duan L.
Cui Y.
Li J.
Angew.
Chem. Int. Ed.
2007,
46:
2431
61
Rehm T.
Stepanenko V.
Zhang X.
Würthner F.
Gröhn F.
Klein K.
Schmuck C.
Org. Lett.
2008,
10:
1469
62
Rodler F.
Linders J.
Fenske T.
Rehm T.
Mayer C.
Schmuck C.
Angew. Chem. Int. Ed.
2010,
49:
8747
63a
Ravoo BJ.
Darcy R.
Angew.
Chem. Int. Ed.
2000,
39:
4324
63b
Voskuhl J.
Ravoo BJ.
Chem. Soc. Rev.
2009,
38:
495
64
Voskuhl J.
Fenske T.
Stuart MCA.
Wibbeling B.
Schmuck C.
Ravoo BJ.
Chem.
Eur. J.
2010,
16:
8300
65
Rehm T.
Schmuck C.
Chem. Soc. Rev.
2010,
39:
3597
66
Merschky M.
Wyszogrodzka M.
Haag R.
Schmuck C.
Chem. Eur. J.
2010,
16:
14242
67
Gröger G.
Stepanenko V.
Würthner F.
Schmuck C.
Chem. Commun. (Cambridge)
2009,
698
68a
Hofmeier H.
Schubert US.
Chem.
Commun. (Cambridge)
2005,
2423
68b
Schmittel M.
Mahata K.
Angew. Chem. Int. Ed.
2008,
47:
5284
69a
Ciferri A.
Macromol. Rapid Commun.
2002,
23:
511
69b
de Greef TFA.
Smudlers MMJ.
Wolffs M.
Schenning APHJ.
Sijbesma RP.
Meijer EW.
Chem. Rev.
2009,
109:
5687
69c
ten Cate AT.
Sijbesma RP.
Macromol.
Rapid Commun.
2002,
23:
1094
70
Sijbesma RP.
Beijer FH.
Brunsveld L.
Folmer BJB.
Hirschberg JHKK.
Lange RF.
Lowe JKL.
Meijer EW.
Science (Washington,
DC, U.S.)
1997,
278:
1601