Synlett 2011(15): 2256-2258  
DOI: 10.1055/s-0030-1261188
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Triphenylphosphine-Catalyzed [3+2] Cycloaddition of Allenoate and Active Olefins: Syntheses of Spirooxindole Derivatives

Shanyan Guoa, Rendong Wanga, Jian Lia, Chunju Lia, Hongmei Dengc, Xueshun Jia*a,b
a Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. of China
Fax: +86(21)66132408; e-Mail: xsjia@mail.shu.edu.cn;
b State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. of China
c Laboratory for Microstructures, Shanghai University, Shanghai, 200444, P. R. of China
Further Information

Publication History

Received 16 May 2011
Publication Date:
12 August 2011 (online)

Abstract

A series of spiro compounds was achieved by triphenylphosphine-catalyzed [3+2] cycloaddition between active methylenemalononitrile and ethyl 2,3-butadienoate. Careful investigation showed that the present method had high regioselectivity. The products have a spirooxindole skeleton, which is a motif common in many natural products and pharmaceutically active compounds.

    References and Notes

  • 1a Akai S. Tsujino T. Akiyamna E. Tanimoto K. Naka T. Kita Y. J. Org. Chem.  2004,  69:  2478 
  • 1b Marti C. Carreira EM. Eur. J. Org. Chem.  2003,  2209 
  • 1c Zhang TY. Zhang H. Tetrahedron Lett.  2002,  43:  193 
  • 2a Gallagher G. Lavanchi PG. Wilson JW. Hieble J. Demmarinis RM. J. Med. Chem.  1985,  28:  1533 
  • 2b Nagata R. Tokunaga T. Hume W. Umezone T. Okazaki U. Ueki Y. Kumagai K. Hourai S. Nagamine J. Seki H. Taiji M. Noguchi H. J. Med. Chem.  2001,  44:  4641 
  • 3a Williams RM. Cox RJ. Acc. Chem. Res.  2003,  36:  127 
  • 3b Galliford CV. Scheidt KA. Angew. Chem. Int. Ed.  2007,  46:  8748; Angew. Chem. 2007, 119, 8902 
  • 3c TrostB M. Jiang C. Synthesis  2006,  369 
  • 3d Lin H. Danishefsky SJ. Angew. Chem. Int. Ed.  2003,  42:  36 ; Angew. Chem. 2003, 115, 38
  • 3e Zhou F. Liu YL. Zhou J. Adv. Synth. Catal.  2010,  352:  1381 
  • For selected examples of total syntheses, see:
  • 4a Greshock TJ. Grubbs AW. Tsukamoto S. Williams RM. Angew. Chem. Int. Ed.  2007,  46:  2262 ; Angew. Chem. 2007, 119, 2312
  • 4b Grubbs AW. Artman GDIII. Tsukamoto S. Williams RM. Angew. Chem. Int. Ed.  2007,  46:  2257 ; Angew. Chem. 2007, 119, 2307
  • 4c Greshock TJ. Grubbs AW. Jiao P. Wicklow DT. Gloer JB. Williams RM. Angew. Chem. Int. Ed.  2008,  47:  3573 ; Angew. Chem. 2008, 120, 3629
  • 4d Trost BM. Cramer N. Bernsmann H. J. Am. Chem. Soc.  2007,  129:  3086 
  • For reviews on phosphine-catalyzed reactions, see:
  • 5a Lu X. Zhang C. Xu Z. Acc. Chem. Res.  2001,  34:  535 
  • 5b Methot JL. Roush WR. Adv. Synth. Catal.  2004,  346:  1035 
  • 5c Ye L.-W. Zhou J. Tang Y. Chem. Soc. Rev.  2008,  37:  1140 
  • 5d Cowen BJ. Miller SJ. Chem. Soc. Rev.  2009,  38:  3102 
  • 5e Marinetti A. Voituriez A. Synlett  2010,  174 
  • For relevant examples, see:
  • 6a Zhang C. Lu X. J. Org. Chem.  1995,  60:  2906 
  • 6b Xu S. Zhou L. Ma R. Song H. He Z. Chem. Eur. J.  2009,  15:  8698 
  • 6c Henry CE. Kwon O. Org. Lett.  2007,  9:  3069 
  • 6d Dudding T. Kwon O. Mercier E. Org. Lett.  2006,  8:  3643 
  • 6e Xia Y. Liang Y. Chen Y. Wang M. Jiao L. Huang F. Liu S. Li Y. Yu Z.-X. J. Am. Chem. Soc.  2007,  129:  3470 
  • 6f Wallace DJ. Sidda RL. Reamer RA. J. Org. Chem.  2007,  72:  1051 
  • 6g Lu X. Lu Z. Zhang X. Tetrahedron  2006,  62:  457 
  • 6h Sampath M. Loh T.-P. Chem. Commun.  2009,  1568 
  • 7 Zhang C. Lu X. J. Org. Chem.  1995,  60:  2906 
  • 8a Du Y. Lu X. J. Org. Chem.  2003,  68:  6463 
  • 8b Wang J.-C. Krische MJ. Angew. Chem. Int. Ed.  2003,  42:  5855; Angew. Chem. 2003, 115, 6035 
  • 8c Pham TQ. Pyne SG. Skelton BW. White AH. J. Org. Chem.  2005,  70:  6369 
  • 9 Xiao H. Chai Z. Zheng C.-W. Yang Y.-Q. Liu W. Zhang J.-K. Zhao G. Angew. Chem. Int. Ed.  2010,  49:  4467 ; Angew. Chem. 2010, 122, 4569
  • 10 Fang Y.-Q. Jacobsen EN. J. Am. Chem. Soc.  2008,  130:  5660 
  • 11 Cowen BJ. Miller SJ. J. Am. Chem. Soc.  2007,  129:  10988 
  • 12 Wilson JE. Fu GC. Angew. Chem. Int. Ed.  2006,  45:  1426; Angew. Chem. 2006, 118, 1454 
  • 13a Zhu X.-F. Lan J. Kwon O. J. Am. Chem. Soc.  2003,  125:  4716 
  • 13b Wurz RP. Fu GC. J. Am. Chem. Soc.  2005,  127:  12234 
  • 13c Tran YS. Kwon O. Org. Lett.  2005,  7:  4289 
  • 13d Tran YS. Kwon O. J. Am. Chem. Soc.  2007,  129:  12632 
  • 13e Wang T. Ye S. Org. Lett.  2010,  12:  4168 
  • 14a Li J. Liu YJ. Li CJ. Jia XS. Adv. Synth. Catal.  2011,  353:  913 
  • 14b Li J. Li SY. Li CJ. Liu YJ. Jia XS. Adv. Synth. Catal.  2010,  352:  336 
  • 14c Zhao YN. Li J. Li CJ. Yin K. Ye DY. Jia XS. Green Chem.  2010,  12:  1370 
15

CCDC 763015 for compound 3b contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystal-lographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

16

Typical Experimental Procedure
Ph3P (10%) was added to a solution of alkene 1 (0.5 mmol) and allenoate 2 (0.6 mmol) in 5 mL toluene at r.t. in the air. The stirred mixture was allowed to react for given the time in Table  [²] , and the process was monitored using TLC detection. After completion of present reaction, the reaction mixture was concentrated under vacuum. The residue was purified by column chromatography on silica gel [silica: 200-300 mesh; eluant: PE-EtOAc] to afford the desired product 3.
Selected Spectroscopic Data of Product 3
Compound 3a: White solid, mp 140.3-142.1 ˚C (uncorrected). ¹H NMR (500 MHz, CDCl3): δ = 7.48-7.44 (m, 2 H), 7.16 (t, J = 7.5 Hz, 2 H), 6.97 (d, J = 8.0 Hz, 1 H), 4.02-3.91 (m, 2 H), 3.80 (dd, J 1 = 17.5 Hz, J 2 = 2.0 Hz, 1 H), 3.48 (dd, J 1 = 17.5 Hz, J 2 = 3.0 Hz, 1 H), 3.30 (s, 3 H), 0.99 (t, J = 7.0 Hz, 3 H). ¹³C NMR (125 MHz, CDCl3): δ = 171.7, 161.1, 144.6, 142.7, 136.5, 131.4, 125.5, 123.8, 123.5, 114.3, 112.9, 109.3, 64.8, 61.4, 43.5, 45.1, 27.1, 13.8. IR (KBr): ν = 3066, 2940, 2255, 1712, 1613, 1475. MS (ESI): m/z = 322 [M + H+], 344 [M + Na+], 360 [M + K+]. HRMS (MALDI): m/z calcd for C18H16N3O3 + [M + H]+: 322.1193; found: 322.1186.