Horm Metab Res 2010; 42(10): 725-730
DOI: 10.1055/s-0030-1261923
Animals, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Mitotane Effects in a H295R Xenograft Model of Adjuvant Treatment of Adrenocortical Cancer

Ö. Lindhe1 , 2 , B. Skogseid1
  • 1Department of Medical Sciences, Uppsala University, Uppsala, Sweden
  • 2Uppsala Imanet AB, GE Healthcare, Uppsala, Sweden
Further Information

Publication History

received 03.03.2010

accepted 15.06.2010

Publication Date:
27 July 2010 (online)

Abstract

Adrenocortical cancer is one of the most aggressive endocrine malignancies. Growth through the capsule or accidental release of cancer cells during surgery frequently results in metastatic disease. We investigated the antitumoral effect of 2 adrenocorticolytic compounds, o,p′-DDD and MeSO2-DDE, in the adrenocortical cell line H295R both in vitro and as a xenograft model in vivo. H295R cells were injected s. c. in nude mice. o,p′-DDD, MeSO2-DDE, or oil (control) was administered i. p., either simultaneously with cell injection at day 0 (mimicking adjuvant treatment), or at day 48 (established tumors). Accumulation of PET tracers [11C]methionine (MET), [11C] metomidate (MTO), 2-deoxy-2-[18F]fluoro-d-glucose (FDG), and [18F]-l-tyrosine (FLT) in the aggregates were assessed ± drug treatment in vitro. Tumor growth was significantly inhibited when o,p′-DDD was given at the same time as injection of tumor cells. No significant growth inhibition was observed after treatment with o,p′-DDD at day 48. A significant reduction in FLT uptake and an increased FDG uptake, compared to control, were observed following treatment with 15 μM o,p′-DDD (p<0.01) in vitro. MeSO2-DDE (15 μM) treatment gave rise to a reduced MET and an increased FLT uptake (p<0.01). Both compounds reduced the uptake of MTO compared to control (p<0.01). Treatment with o,p′-DDD simultaneously to inoculation of H295R cells in mice, imitating release of cells during surgery, gave a markedly better effect than treatment of established H295R tumors. We suggest that FLT may be a potential PET biomarker when assessing adrenocortical cancer treatment with o,p′-DDD. Further studies in humans are needed to investigate this.

References

  • 1 Terzolo M, Angeli A, Fassnacht M, Daffara F, Tauchmanova L, Conton PA, Rossetto R, Buci L, Sperone P, Grossrubatscher E, Reimondo G, Bollito E, Papotti M, Saeger W, Hahner S, Koschker AC, Arvat E, Ambrosi B, Loli P, Lombardi G, Mannelli M, Bruzzi P, Mantero F, Allolio B, Dogliotti L, Berruti A. Adjuvant mitotane treatment for adrenocortical carcinoma.  N Engl J Med. 2007;  356 2372-2380
  • 2 Huang H, Fojo T. Adjuvant mitotane for adrenocortical cancer – a recurring controversy.  J Clin Endocrinol Metab. 2008;  93 3730-3732
  • 3 Wooten MD, King DK. Adrenal cortical carcinoma: Epidemiology and treatment with mitotane and a review of the literature.  Cancer. 1993;  72 3145-3155
  • 4 Hart MM, Reagan RL, Adamson RH. The effect of isomers of DDD on the ACTH-induced steroid output, histology and ultrastructure of the dog adrenal cortex.  Toxicol Appl Pharmacol. 1973;  24 101-113
  • 5 Terzolo M, Pia A, Berruti A, Osella G, Ali A, Carbone V, Testa E, Dogliotti L, Angeli A. Low-dose monitored mitotane treatment achieves the therapeutic range with manageable side effects in patients with adrenocortical cancer.  J Clin Endocrinol Metab. 2000;  85 2234-2238
  • 6 Wajchenberg BL, Albergaria Pereira MA, Medonca BB, Latronico AC, Campos Carneiro P, Ferreira Alves VA, Zerbini MC, Liberman B, Carlos Gomes G, Kirschner MA. Adrenocortical carcinoma: clinical and laboratory observations.  Cancer. 2000;  88 711-736
  • 7 Lund BO, Bergman Å, Brandt I. Metabolic activation and toxicity of a DDT-metabolite, 3-methylsulphonyl-DDE, in the adrenal zona fasciculata in mice.  Chem Biol Interact. 1988;  65 25-40
  • 8 Ulleras E, Ohlsson A, Oskarsson A. Secretion of cortisol and aldosterone as a vulnerable target for adrenal endocrine disruption – screening of 30 selected chemicals in the human H295R cell model.  J Appl Toxicol. 2008;  28 1045-1053
  • 9 Jönsson C-J, Rodriguez Martinez H, Lund BO, Bergman Å, Brandt I. Adrenocortical toxicity of 3-methylsulfonyl-DDE in mice. II. Mitochondrial changes following ecologically relevant doses.  Fundam Appl Toxicol. 1991;  16 365-374
  • 10 Lund BO, Lund J. Novel involvement of a mitochondrial steroid hydroxylase (P450c11) in xenobiotic metabolism.  J Biol Chem. 1995;  270 20895-20897
  • 11 Domalik LJ, Chaplin DD, Kirkman MS, Wu RC, Liu WW, Howard TA, Seldin MF, Parker KL. Different isozymes of mouse 11 beta-hydroxylase produce mineralocorticoids and glucocorticoids.  Mol Endocrinol. 1991;  5 1853-1861
  • 12 Lindhe Ö, Lund B-O, Bergman Å, Brandt I. Irreversible binding and adrenocorticolytic activity of the DDT metabolite 3-methylsulphonyl-DDE examined in tissue slice culture.  Environ Health Perspect. 2001;  109 105-110
  • 13 Lindhe Ö, Skogseid B, Brandt I. Cytochrome P450-catalysed binding of 3-methylsulfonyl-DDE and o,p′-DDD in human adrenal zona fasciculata/reticularis.  J Clin Endocrinol Metabol. 2002;  87 1319-1326
  • 14 Gazdar AF, Oie HK, Shackleton CH, Chen TR, Triche TJ, Myers CE, Chrousos GP, Brennan MF, Stein CA, La Rocca RV. Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis.  Cancer Res. 1990;  50 5488-5496
  • 15 Rainey WE, Bird IM, Mason JI. The NCI-H295 cell line: a pluripotent model for human adrenocortical studies.  Mol Cell Endocrinol. 1994;  100 45-50
  • 16 Johansson M, Sanderson T, Lund B-O. Effects of 3-MeSO2-DDE and some CYP inhibitors on glucocorticoid steroidogenesis in the H295R human adrenocortical carcinoma cell line.  Toxicol In Vitro. 2002;  16 91-99
  • 17 Cobb VJ, Williams BC, Mason JI, Walker SW. Forskolin treatment directs steroid production towards the androgen pathway in the NCI-H295R adrenocortical tumour cell line.  Endocr Res. 1996;  22 545-550
  • 18 Rainey WE, Bird IM, Sawetawan C, Hanley NA, McCarthy JL, McGee EA, Wester R, Mason JI. Regulation of human adrenal carcinoma cell (NCI-H295) production of C19 steroids.  J Clin Endocrinol Metab. 1993;  77 731-737
  • 19 Mountjoy KG, Bird IM, Rainey WE, Cone RD. ACTH induces up-regulation of ACTH receptor mRNA in mouse and human adrenocortical cell lines.  Mol Cell Endocrinol. 1994;  99 R17-R20
  • 20 Ozbay T, Merrill Jr AH, Sewer MB. ACTH regulates steroidogenic gene expression and cortisol biosynthesis in the human adrenal cortex via sphingolipid metabolism.  Endocr Res. 2004;  30 787-794
  • 21 Fassnacht M, Hahner S, Beuschlein F, Klink A, Reincke M, Allolio B. New mechanisms of adrenostatic compounds in a human adrenocortical cancer cell line.  Eur J Clin Invest. 2000;  3 (S 30) 76-82
  • 22 Oskarsson A, Ulleras E, Plant KE, Hinson JP, Goldfarb PS. Steroidogenic gene expression in H295R cells and the human adrenal gland: adrenotoxic effects of lindane in vitro.  J Appl Toxicol. 2006;  26 484-492
  • 23 Logie A, Boudou P, Boccon-Gibod L, Baudin E, Vassal G, Schlumberger M, Le Bouc Y, Gicquel C. Establishment and characterization of a human adrenocortical carcinoma xenograft model.  Endocrinology. 2000;  141 3165-3171
  • 24 Barlaskar FM, Spalding AC, Heaton JH, Kuick R, Kim AC, Thomas DG, Giordano TJ, Ben-Josef E, Hammer GD. Preclinical targeting of the type I insulin-like growth factor receptor in adrenocortical carcinoma.  J Clin Endocrinol Metab. 2009;  94 204-212
  • 25 Hennings J, Lindhe O, Bergstrom M, Langstrom B, Sundin A, Hellman P. [11C]. metomidate positron emission tomography of adrenocortical tumors in correlation with histopathological findings.  J Clin Endocrinol Metab. 2006;  91 1410-1414
  • 26 Han SJ, Kim TS, Jeon SW, Jeong SJ, Yun M, Rhee Y, Kang ES, Cha BS, Lee EJ, Lee HC, Lim SK. Analysis of adrenal masses by 18F-FDG positron emission tomography scanning.  Int J Clin Practice. 2007;  61 802-809
  • 27 Bergman Å, Wachtmeister CA. Synthesis of methanesulfonyl derivates of 2,2-bis (4-chlorophenyl)-1,1-dichloroethylene (p,p′-DDE) present in seal from the Baltic.  Acta Chem Scand. 1977;  B31 90-91
  • 28 Monazzam A, Razifar P, Lindhe O, Josephsson R, Langstrom B, Bergstrom M. A new, fast and semi-automated size determination method (SASDM) for studying multicellular tumor spheroids.  Cancer Cell Int. 2005;  5 32
  • 29 Lund BO, Bergman A, Brandt I. In vitro macromolecular binding of 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethane (o,p′-DDD) in the mouse lung and liver.  Chem Biol Interact. 1989;  70 63-72
  • 30 Lund BO, Klasson Wehler E, Brandt I. o,p′-DDD in the mouse lung: selective uptake, covalent binding and effect on drug metabolism.  Chem Biol Interact. 1986;  60 129-141
  • 31 Cai W, Counsell RE, Schteingart DE, Sinsheimer JE, Vaz ADN, Wotring LL. Adrenal proteins bound by a reactive intermediate of mitotane.  Cancer Chemother Pharmacol. 1997;  39 537-540
  • 32 Khaitan D, Chandna S, Arya MB, Dwarakanath BS. Establishment and characterization of multicellular spheroids from a human glioma cell line; Implications for tumor therapy.  J Transl Med. 2006;  4 12
  • 33 Khoei S, Goliaei B, Neshasteh-Riz A, Deizadji A. The role of heat shock protein 70 in the thermoresistance of prostate cancer cell line spheroids.  FEBS Lett. 2004;  561 144-148
  • 34 Mueller-Klieser W. 3-dimensional cell cultures: from molecular mechanisms to clinical applications.  Am J Physiol. 1997;  273 C1109-C1123
  • 35 Lindstrom V, Brandt I, Lindhe O. Species differences in 3-methylsulphonyl-DDE bioactivation by adrenocortical tissue.  Arch Toxicol. 2008;  82 159-163

Correspondence

Ö. LindhePhD 

Dept of Medical Sciences

Uppsala University

51 85 Uppsala

Sweden

Phone: +46 18 611 37 68

Fax: +46 18 55 36 01

Email: orjan.lindhe@medsci.uu.se