Der Nuklearmediziner 2010; 33(4): 222-227
DOI: 10.1055/s-0030-1267166
Schilddrüsenkarzinom – neue Aspekte in Diagnostik und Therapie

© Georg Thieme Verlag KG Stuttgart · New York

Die patientenspezifische Dosimetrie bei der Radioiodtherapie des differenzierten Schilddrüsenkarzinoms

Patient-Specific Dosimetry for Radioiodine Treatment of Differentiated Thyroid CancerM. Lassmann1
  • 1Klinik und Poliklinik für Nuklearmedizin, Universität Würzburg
Further Information

Publication History

Publication Date:
16 December 2010 (online)

Zusammenfassung

Die adjuvante Therapie des differenzierten Schilddrüsenkarzinoms mit radioaktivem Iod ist das Standardverfahren für die Ablation des Restschilddrüsengewebes nach Operation und für die Behandlung von iodaviden Metastasen. Meist werden zur Behandlung Standardaktivitäten verabreicht. Zusätzlich gibt es aber 2 dosimetrische Konzepte für die Behandlung des Schilddrüsenkarzinoms mittels Radioiod: a) Die Begrenzung der Blutdosis auf 2 Gy und b) die Optimierung der Energiedosen für iodavide Läsionen. Beide Konzepte und deren klinische Anwendungen und Ergebnisse sowie neue Methoden zur Einbeziehung radiobiologischer Überlegungen werden beschrieben.

Abstract

Adjuvant therapy of differentiated thyroid cancer with radioactive iodine is a standard procedure for the ablation of remnant thyroid tissue following surgery and for the treatment of iodine avid metastases. In most cases fixed activities are administered. Presently there are two dosimetric approaches for the treatment of thyroid cancer using radioiodine: a) the 2 Gy bone marrow dose limited approach and b) the optimization of the absorbed dose to iodine avid lesions. Both concepts and their clinical applications and, in addition, new dosimetric methods which include radiobiological considerations are described.

Literatur

  • 1 Autret D, Bitar A, Ferrer L. et al . Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy.  Cancer Biother Radiopharm. 2005;  20 77-84
  • 2 Barendsen GW. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses.  Int J Radiat Oncol Biol Phys. 1982;  8 1981-1997
  • 3 Benua RS, Cicale NR, Sonenberg M. et al . The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer.  Am J Roentgenol Radium Ther Nucl Med. 1962;  87 171-182
  • 4 Chiesa C, Castellani MR, Vellani C. et al . Individualized dosimetry in the management of metastatic differentiated thyroid cancer.  Q J Nucl Med Mol Imaging. 2009;  53 546-561
  • 5 Dale RG. Dose-rate effects in targeted radiotherapy.  Phys Med Biol. 1996;  41 1871-1884
  • 6 de Keizer B, Brans B, Hoekstra A. et al . Tumour dosimetry and response in patients with metastatic differentiated thyroid cancer using recombinant human thyrotropin before radioiodine therapy.  Eur J Nucl Med Mol Imaging. 2003;  30 367-373
  • 7 Dietlein M, Dressler J, Eschner W. et al . Procedure guidelines for radioiodine therapy of differentiated thyroid cancer (version 3).  Nuklearmedizin. 2007;  46 213-219
  • 8 Dorn R, Kopp J, Vogt H. et al . Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach.  J Nucl Med. 2003;  44 451-456
  • 9 Hänscheid H, Lassmann M, Luster M. et al . Blood dosimetry from a single measurement of the whole body radioiodine retention in patients with differentiated thyroid carcinoma.  Endocr Relat Cancer. 2009;  16 1283-1289
  • 10 Hänscheid H, Lassmann M, Luster M. et al . Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal.  J Nucl Med. 2006;  47 648-654
  • 11 Haq MS, McCready RV, Harmer CL. Treatment of advanced differentiated thyroid carcinoma with high activity radioiodine therapy.  Nucl Med Commun. 2004;  25 799-805
  • 12 Kulkarni K, Van Nostrand D, Atkins F. et al . The relative frequency in which empiric dosages of radioiodine would potentially overtreat or undertreat patients who have metastatic well-differentiated thyroid cancer.  Thyroid. 2006;  16 1019-1023
  • 13 Lassmann M, Glatting G. Grundlagen der patientenspezifischen Dosimetrie bei Radionuklidtherapien.  Der Nuklearmediziner. 2008;  31 93-100
  • 14 Lassmann M, Hanscheid H, Chiesa C. et al . EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy.  Eur J Nucl Med Mol Imaging. 2008;  35 1405-1412
  • 15 Lassmann M, Reiners C, Luster M. Dosimetry and thyroid cancer: the individual dosage of radioiodine.  Endocr Relat Cancer. 2010;  17 R161-R172
  • 16 Lee JJ, Chung JK, Kim SE. et al . Maximal safe dose of I-131 after failure of standard fixed dose therapy in patients with differentiated thyroid carcinoma.  Ann Nucl Med. 2008;  22 727-734
  • 17 Luster M, Clarke SE, Dietlein M. et al . Guidelines for radioiodine therapy of differentiated thyroid cancer.  Eur J Nucl Med Mol Imaging. 2008;  35 1941-1959
  • 18 Maxon HR, Smith HS 3rd. Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer.  Endocrinol Metab Clin North Am. 1990;  19 685-718
  • 19 Maxon HR, Thomas SR, Hertzberg VS. et al . Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer.  N Engl J Med. 1983;  309 937-941
  • 20 Medvedec M. Thyroid stunning in vivo and in vitro.  Nucl Med Commun. 2005;  26 731-735
  • 21 Menzel C, Grunwald F, Schomburg A. et al . “High-dose” radioiodine therapy in advanced differentiated thyroid carcinoma.  J Nucl Med. 1996;  37 1496-1503
  • 22 O’Donoghue JA. Implications of nonuniform tumor doses for radioimmunotherapy.  J Nucl Med. 1999;  40 1337-1341
  • 23 Pacini F, Ladenson PW, Schlumberger M. et al . Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study.  J Clin Endocrinol Metab. 2006;  91 926-932
  • 24 Prideaux AR, Song H, Hobbs RF. et al . Three-dimensional radiobiologic dosimetry: application of radiobiologic modeling to patient-specific 3-dimensional imaging-based internal dosimetry.  J Nucl Med. 2007;  48 1008-1016
  • 25 Remy H, Borget I, Leboulleux S. et al . 131I effective half-life and dosimetry in thyroid cancer patients.  J Nucl Med. 2008;  49 1445-1450
  • 26 Samuel AM, Rajashekharrao B, Shah DH. Pulmonary metastases in children and adolescents with well-differentiated thyroid cancer.  J Nucl Med. 1998;  39 1531-1536
  • 27 Sgouros G, Kolbert KS, Sheikh A. et al . Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software.  J Nucl Med. 2004;  45 1366-1372
  • 28 Sgouros G, Song H, Ladenson PW. et al . Lung toxicity in radioiodine therapy of thyroid carcinoma: development of a dose-rate method and dosimetric implications of the 80-mCi rule.  J Nucl Med. 2006;  47 1977-1984
  • 29 Song H, He B, Prideaux A. et al . Lung dosimetry for radioiodine treatment planning in the case of diffuse lung metastases.  J Nucl Med. 2006;  47 1985-1994
  • 30 Tuttle RM, Leboeuf R, Robbins RJ. et al . Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer.  J Nucl Med. 2006;  47 1587-1591
  • 31 Van Nostrand D, Atkins F, Yeganeh F. et al . Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma.  Thyroid. 2002;  12 121-134
  • 32 Verburg FA, Hänscheid H, Biko J. et al . Dosimetry-guided high-activity (131)I therapy in patients with advanced differentiated thyroid carcinoma: initial experience.  Eur J Nucl Med Mol Imaging. 2010;  37 896-903

Korrespondenzadresse

Prof. Michael Lassmann

Klinik und Poliklinik für

Nuklearmedizin

Universität Würzburg

Oberdürrbacher Straße 6

97080 Würzburg

Phone: +49/931/201 35500

Fax: +49/931/201 61803

Email: Lassmann_m@klinik.uni-wuerzburg.de